Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Sudo Caching

The sudo command "allows a system administrator to delegate authority to give certain users (or groups of users) the ability to run some (or all) commands as root or another user while providing an audit trail of the commands and their arguments." (Citation: sudo man page 2018) Since sudo was made for the system administrator, it has some useful configuration features such as a timestamp_timeout that is the amount of time in minutes between instances of sudo before it will re-prompt for a password. This is because sudo has the ability to cache credentials for a period of time. Sudo creates (or touches) a file at /var/db/sudo with a timestamp of when sudo was last run to determine this timeout. Additionally, there is a tty_tickets variable that treats each new tty (terminal session) in isolation. This means that, for example, the sudo timeout of one tty will not affect another tty (you will have to type the password again). Adversaries can abuse poor configurations of this to escalate privileges without needing the user's password. /var/db/sudo's timestamp can be monitored to see if it falls within the timestamp_timeout range. If it does, then malware can execute sudo commands without needing to supply the user's password. When tty_tickets is disabled, adversaries can do this from any tty for that user. The OSX Proton Malware has disabled tty_tickets to potentially make scripting easier by issuing echo \'Defaults !tty_tickets\' >> /etc/sudoers (Citation: cybereason osx proton). In order for this change to be reflected, the Proton malware also must issue killall Terminal. As of macOS Sierra, the sudoers file has tty_tickets enabled by default.

ID: T1206
Tactic(s): Privilege Escalation
Platforms: Linux, macOS
Version: 1.1
Created: 18 Apr 2018
Last Modified: 25 Apr 2025

Mitigations

Mitigation Description
Privileged Account Management

Privileged Account Management focuses on implementing policies, controls, and tools to securely manage privileged accounts (e.g., SYSTEM, root, or administrative accounts). This includes restricting access, limiting the scope of permissions, monitoring privileged account usage, and ensuring accountability through logging and auditing.This mitigation can be implemented through the following measures: Account Permissions and Roles: - Implement RBAC and least privilege principles to allocate permissions securely. - Use tools like Active Directory Group Policies to enforce access restrictions. Credential Security: - Deploy password vaulting tools like CyberArk, HashiCorp Vault, or KeePass for secure storage and rotation of credentials. - Enforce password policies for complexity, uniqueness, and expiration using tools like Microsoft Group Policy Objects (GPO). Multi-Factor Authentication (MFA): - Enforce MFA for all privileged accounts using Duo Security, Okta, or Microsoft Azure AD MFA. Privileged Access Management (PAM): - Use PAM solutions like CyberArk, BeyondTrust, or Thycotic to manage, monitor, and audit privileged access. Auditing and Monitoring: - Integrate activity monitoring into your SIEM (e.g., Splunk or QRadar) to detect and alert on anomalous privileged account usage. Just-In-Time Access: - Deploy JIT solutions like Azure Privileged Identity Management (PIM) or configure ephemeral roles in AWS and GCP to grant time-limited elevated permissions. *Tools for Implementation* Privileged Access Management (PAM): - CyberArk, BeyondTrust, Thycotic, HashiCorp Vault. Credential Management: - Microsoft LAPS (Local Admin Password Solution), Password Safe, HashiCorp Vault, KeePass. Multi-Factor Authentication: - Duo Security, Okta, Microsoft Azure MFA, Google Authenticator. Linux Privilege Management: - sudo configuration, SELinux, AppArmor. Just-In-Time Access: - Azure Privileged Identity Management (PIM), AWS IAM Roles with session constraints, GCP Identity-Aware Proxy.

Sudo Caching Mitigation

Setting the timestamp_timeout to 0 will require the user to input their password every time sudo is executed. Similarly, ensuring that the tty_tickets setting is enabled will prevent this leakage across tty sessions.

Operating System Configuration

Operating System Configuration involves adjusting system settings and hardening the default configurations of an operating system (OS) to mitigate adversary exploitation and prevent abuse of system functionality. Proper OS configurations address security vulnerabilities, limit attack surfaces, and ensure robust defense against a wide range of techniques. This mitigation can be implemented through the following measures: Disable Unused Features: - Turn off SMBv1, LLMNR, and NetBIOS where not needed. - Disable remote registry and unnecessary services. Enforce OS-level Protections: - Enable Data Execution Prevention (DEP), Address Space Layout Randomization (ASLR), and Control Flow Guard (CFG) on Windows. - Use AppArmor or SELinux on Linux for mandatory access controls. Secure Access Settings: - Enable User Account Control (UAC) for Windows. - Restrict root/sudo access on Linux/macOS and enforce strong permissions using sudoers files. File System Hardening: - Implement least-privilege access for critical files and system directories. - Audit permissions regularly using tools like icacls (Windows) or getfacl/chmod (Linux/macOS). Secure Remote Access: - Restrict RDP, SSH, and VNC to authorized IPs using firewall rules. - Enable NLA for RDP and enforce strong password/lockout policies. Harden Boot Configurations: - Enable Secure Boot and enforce UEFI/BIOS password protection. - Use BitLocker or LUKS to encrypt boot drives. Regular Audits: - Periodically audit OS configurations using tools like CIS Benchmarks or SCAP tools. *Tools for Implementation* Windows: - Microsoft Group Policy Objects (GPO): Centrally enforce OS security settings. - Windows Defender Exploit Guard: Built-in OS protection against exploits. - CIS-CAT Pro: Audit Windows security configurations based on CIS Benchmarks. Linux/macOS: - AppArmor/SELinux: Enforce mandatory access controls. - Lynis: Perform comprehensive security audits. - SCAP Security Guide: Automate configuration hardening using Security Content Automation Protocol. Cross-Platform: - Ansible or Chef/Puppet: Automate configuration hardening at scale. - OpenSCAP: Perform compliance and configuration checks.

Detection

This technique is abusing normal functionality in macOS and Linux systems, but sudo has the ability to log all input and output based on the LOG_INPUT and LOG_OUTPUT directives in the /etc/sudoers file.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.