Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Data from Information Repositories:  Confluence

Adversaries may leverage Confluence repositories to mine valuable information. Often found in development environments alongside Atlassian JIRA, Confluence is generally used to store development-related documentation, however, in general may contain more diverse categories of useful information, such as: * Policies, procedures, and standards * Physical / logical network diagrams * System architecture diagrams * Technical system documentation * Testing / development credentials (i.e., Unsecured Credentials) * Work / project schedules * Source code snippets * Links to network shares and other internal resources

ID: T1213.001
Sub-technique of:  T1213
Tactic(s): Collection
Platforms: SaaS
Data Sources: Application Log: Application Log Content, Logon Session: Logon Session Creation
Version: 1.1
Created: 14 Feb 2020
Last Modified: 15 Apr 2025

Procedure Examples

Name Description
LAPSUS$

LAPSUS$ has searched a victim's network for collaboration platforms like Confluence and JIRA to discover further high-privilege account credentials.(Citation: MSTIC DEV-0537 Mar 2022)

Mitigations

Mitigation Description
User Training

User Training involves educating employees and contractors on recognizing, reporting, and preventing cyber threats that rely on human interaction, such as phishing, social engineering, and other manipulative techniques. Comprehensive training programs create a human firewall by empowering users to be an active component of the organization's cybersecurity defenses. This mitigation can be implemented through the following measures: Create Comprehensive Training Programs: - Design training modules tailored to the organization's risk profile, covering topics such as phishing, password management, and incident reporting. - Provide role-specific training for high-risk employees, such as helpdesk staff or executives. Use Simulated Exercises: - Conduct phishing simulations to measure user susceptibility and provide targeted follow-up training. - Run social engineering drills to evaluate employee responses and reinforce protocols. Leverage Gamification and Engagement: - Introduce interactive learning methods such as quizzes, gamified challenges, and rewards for successful detection and reporting of threats. Incorporate Security Policies into Onboarding: - Include cybersecurity training as part of the onboarding process for new employees. - Provide easy-to-understand materials outlining acceptable use policies and reporting procedures. Regular Refresher Courses: - Update training materials to include emerging threats and techniques used by adversaries. - Ensure all employees complete periodic refresher courses to stay informed. Emphasize Real-World Scenarios: - Use case studies of recent attacks to demonstrate the consequences of successful phishing or social engineering. - Discuss how specific employee actions can prevent or mitigate such attacks.

Audit

Auditing is the process of recording activity and systematically reviewing and analyzing the activity and system configurations. The primary purpose of auditing is to detect anomalies and identify potential threats or weaknesses in the environment. Proper auditing configurations can also help to meet compliance requirements. The process of auditing encompasses regular analysis of user behaviors and system logs in support of proactive security measures. Auditing is applicable to all systems used within an organization, from the front door of a building to accessing a file on a fileserver. It is considered more critical for regulated industries such as, healthcare, finance and government where compliance requirements demand stringent tracking of user and system activates.This mitigation can be implemented through the following measures: System Audit: - Use Case: Regularly assess system configurations to ensure compliance with organizational security policies. - Implementation: Use tools to scan for deviations from established benchmarks. Permission Audits: - Use Case: Review file and folder permissions to minimize the risk of unauthorized access or privilege escalation. - Implementation: Run access reviews to identify users or groups with excessive permissions. Software Audits: - Use Case: Identify outdated, unsupported, or insecure software that could serve as an attack vector. - Implementation: Use inventory and vulnerability scanning tools to detect outdated versions and recommend secure alternatives. Configuration Audits: - Use Case: Evaluate system and network configurations to ensure secure settings (e.g., disabled SMBv1, enabled MFA). - Implementation: Implement automated configuration scanning tools like SCAP (Security Content Automation Protocol) to identify non-compliant systems. Network Audits: - Use Case: Examine network traffic, firewall rules, and endpoint communications to identify unauthorized or insecure connections. - Implementation: Utilize tools such as Wireshark, or Zeek to monitor and log suspicious network behavior.

User Account Management

User Account Management involves implementing and enforcing policies for the lifecycle of user accounts, including creation, modification, and deactivation. Proper account management reduces the attack surface by limiting unauthorized access, managing account privileges, and ensuring accounts are used according to organizational policies. This mitigation can be implemented through the following measures: Enforcing the Principle of Least Privilege - Implementation: Assign users only the minimum permissions required to perform their job functions. Regularly audit accounts to ensure no excess permissions are granted. - Use Case: Reduces the risk of privilege escalation by ensuring accounts cannot perform unauthorized actions. Implementing Strong Password Policies - Implementation: Enforce password complexity requirements (e.g., length, character types). Require password expiration every 90 days and disallow password reuse. - Use Case: Prevents adversaries from gaining unauthorized access through password guessing or brute force attacks. Managing Dormant and Orphaned Accounts - Implementation: Implement automated workflows to disable accounts after a set period of inactivity (e.g., 30 days). Remove orphaned accounts (e.g., accounts without an assigned owner) during regular account audits. - Use Case: Eliminates dormant accounts that could be exploited by attackers. Account Lockout Policies - Implementation: Configure account lockout thresholds (e.g., lock accounts after five failed login attempts). Set lockout durations to a minimum of 15 minutes. - Use Case: Mitigates automated attack techniques that rely on repeated login attempts. Multi-Factor Authentication (MFA) for High-Risk Accounts - Implementation: Require MFA for all administrative accounts and high-risk users. Use MFA mechanisms like hardware tokens, authenticator apps, or biometrics. - Use Case: Prevents unauthorized access, even if credentials are stolen. Restricting Interactive Logins - Implementation: Restrict interactive logins for privileged accounts to specific secure systems or management consoles. Use group policies to enforce logon restrictions. - Use Case: Protects sensitive accounts from misuse or exploitation. *Tools for Implementation* Built-in Tools: - Microsoft Active Directory (AD): Centralized account management and RBAC enforcement. - Group Policy Object (GPO): Enforce password policies, logon restrictions, and account lockout policies. Identity and Access Management (IAM) Tools: - Okta: Centralized user provisioning, MFA, and SSO integration. - Microsoft Azure Active Directory: Provides advanced account lifecycle management, role-based access, and conditional access policies. Privileged Account Management (PAM): - CyberArk, BeyondTrust, Thycotic: Manage and monitor privileged account usage, enforce session recording, and JIT access.

Detection

Monitor access to Confluence repositories performed by privileged users (for example, Active Directory Domain, Enterprise, or Schema Administrators) as these types of accounts should generally not be used to access information repositories. If the capability exists, it may be of value to monitor and alert on users that are retrieving and viewing a large number of documents and pages; this behavior may be indicative of programmatic means being used to retrieve all data within the repository. In environments with high-maturity, it may be possible to leverage User-Behavioral Analytics (UBA) platforms to detect and alert on user based anomalies. User access logging within Atlassian's Confluence can be configured to report access to certain pages and documents through AccessLogFilter. (Citation: Atlassian Confluence Logging) Additional log storage and analysis infrastructure will likely be required for more robust detection capabilities.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.