Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Boot or Logon Autostart Execution:  Kernel Modules and Extensions

Adversaries may modify the kernel to automatically execute programs on system boot. Loadable Kernel Modules (LKMs) are pieces of code that can be loaded and unloaded into the kernel upon demand. They extend the functionality of the kernel without the need to reboot the system. For example, one type of module is the device driver, which allows the kernel to access hardware connected to the system.(Citation: Linux Kernel Programming)  When used maliciously, LKMs can be a type of kernel-mode Rootkit that run with the highest operating system privilege (Ring 0).(Citation: Linux Kernel Module Programming Guide) Common features of LKM based rootkits include: hiding itself, selective hiding of files, processes and network activity, as well as log tampering, providing authenticated backdoors, and enabling root access to non-privileged users.(Citation: iDefense Rootkit Overview) Kernel extensions, also called kext, are used in macOS to load functionality onto a system similar to LKMs for Linux. Since the kernel is responsible for enforcing security and the kernel extensions run as apart of the kernel, kexts are not governed by macOS security policies. Kexts are loaded and unloaded through kextload and kextunload commands. Kexts need to be signed with a developer ID that is granted privileges by Apple allowing it to sign Kernel extensions. Developers without these privileges may still sign kexts but they will not load unless SIP is disabled. If SIP is enabled, the kext signature is verified before being added to the AuxKC.(Citation: System and kernel extensions in macOS) Since macOS Catalina 10.15, kernel extensions have been deprecated in favor of System Extensions. However, kexts are still allowed as "Legacy System Extensions" since there is no System Extension for Kernel Programming Interfaces.(Citation: Apple Kernel Extension Deprecation) Adversaries can use LKMs and kexts to conduct Persistence and/or Privilege Escalation on a system. Examples have been found in the wild, and there are some relevant open source projects as well.(Citation: Volatility Phalanx2)(Citation: CrowdStrike Linux Rootkit)(Citation: GitHub Reptile)(Citation: GitHub Diamorphine)(Citation: RSAC 2015 San Francisco Patrick Wardle)(Citation: Synack Secure Kernel Extension Broken)(Citation: Securelist Ventir)(Citation: Trend Micro Skidmap)

ID: T1547.006
Sub-technique of:  T1547
Tactic(s): Persistence, Privilege Escalation
Platforms: Linux, macOS
Data Sources: Command: Command Execution, File: File Creation, File: File Modification, Kernel: Kernel Module Load, Process: Process Creation
Version: 1.4
Created: 24 Jan 2020
Last Modified: 15 Apr 2025

Procedure Examples

Name Description
Drovorub

Drovorub can use kernel modules to establish persistence.(Citation: NSA/FBI Drovorub August 2020)

Skidmap

Skidmap has the ability to install several loadable kernel modules (LKMs) on infected machines.(Citation: Trend Micro Skidmap)

During Operation CuckooBees, attackers used a signed kernel rootkit to establish additional persistence.(Citation: Cybereason OperationCuckooBees May 2022)

Mitigations

Mitigation Description
Privileged Account Management

Privileged Account Management focuses on implementing policies, controls, and tools to securely manage privileged accounts (e.g., SYSTEM, root, or administrative accounts). This includes restricting access, limiting the scope of permissions, monitoring privileged account usage, and ensuring accountability through logging and auditing.This mitigation can be implemented through the following measures: Account Permissions and Roles: - Implement RBAC and least privilege principles to allocate permissions securely. - Use tools like Active Directory Group Policies to enforce access restrictions. Credential Security: - Deploy password vaulting tools like CyberArk, HashiCorp Vault, or KeePass for secure storage and rotation of credentials. - Enforce password policies for complexity, uniqueness, and expiration using tools like Microsoft Group Policy Objects (GPO). Multi-Factor Authentication (MFA): - Enforce MFA for all privileged accounts using Duo Security, Okta, or Microsoft Azure AD MFA. Privileged Access Management (PAM): - Use PAM solutions like CyberArk, BeyondTrust, or Thycotic to manage, monitor, and audit privileged access. Auditing and Monitoring: - Integrate activity monitoring into your SIEM (e.g., Splunk or QRadar) to detect and alert on anomalous privileged account usage. Just-In-Time Access: - Deploy JIT solutions like Azure Privileged Identity Management (PIM) or configure ephemeral roles in AWS and GCP to grant time-limited elevated permissions. *Tools for Implementation* Privileged Access Management (PAM): - CyberArk, BeyondTrust, Thycotic, HashiCorp Vault. Credential Management: - Microsoft LAPS (Local Admin Password Solution), Password Safe, HashiCorp Vault, KeePass. Multi-Factor Authentication: - Duo Security, Okta, Microsoft Azure MFA, Google Authenticator. Linux Privilege Management: - sudo configuration, SELinux, AppArmor. Just-In-Time Access: - Azure Privileged Identity Management (PIM), AWS IAM Roles with session constraints, GCP Identity-Aware Proxy.

User Account Management

User Account Management involves implementing and enforcing policies for the lifecycle of user accounts, including creation, modification, and deactivation. Proper account management reduces the attack surface by limiting unauthorized access, managing account privileges, and ensuring accounts are used according to organizational policies. This mitigation can be implemented through the following measures: Enforcing the Principle of Least Privilege - Implementation: Assign users only the minimum permissions required to perform their job functions. Regularly audit accounts to ensure no excess permissions are granted. - Use Case: Reduces the risk of privilege escalation by ensuring accounts cannot perform unauthorized actions. Implementing Strong Password Policies - Implementation: Enforce password complexity requirements (e.g., length, character types). Require password expiration every 90 days and disallow password reuse. - Use Case: Prevents adversaries from gaining unauthorized access through password guessing or brute force attacks. Managing Dormant and Orphaned Accounts - Implementation: Implement automated workflows to disable accounts after a set period of inactivity (e.g., 30 days). Remove orphaned accounts (e.g., accounts without an assigned owner) during regular account audits. - Use Case: Eliminates dormant accounts that could be exploited by attackers. Account Lockout Policies - Implementation: Configure account lockout thresholds (e.g., lock accounts after five failed login attempts). Set lockout durations to a minimum of 15 minutes. - Use Case: Mitigates automated attack techniques that rely on repeated login attempts. Multi-Factor Authentication (MFA) for High-Risk Accounts - Implementation: Require MFA for all administrative accounts and high-risk users. Use MFA mechanisms like hardware tokens, authenticator apps, or biometrics. - Use Case: Prevents unauthorized access, even if credentials are stolen. Restricting Interactive Logins - Implementation: Restrict interactive logins for privileged accounts to specific secure systems or management consoles. Use group policies to enforce logon restrictions. - Use Case: Protects sensitive accounts from misuse or exploitation. *Tools for Implementation* Built-in Tools: - Microsoft Active Directory (AD): Centralized account management and RBAC enforcement. - Group Policy Object (GPO): Enforce password policies, logon restrictions, and account lockout policies. Identity and Access Management (IAM) Tools: - Okta: Centralized user provisioning, MFA, and SSO integration. - Microsoft Azure Active Directory: Provides advanced account lifecycle management, role-based access, and conditional access policies. Privileged Account Management (PAM): - CyberArk, BeyondTrust, Thycotic: Manage and monitor privileged account usage, enforce session recording, and JIT access.

Antivirus/Antimalware

Antivirus/Antimalware solutions utilize signatures, heuristics, and behavioral analysis to detect, block, and remediate malicious software, including viruses, trojans, ransomware, and spyware. These solutions continuously monitor endpoints and systems for known malicious patterns and suspicious behaviors that indicate compromise. Antivirus/Antimalware software should be deployed across all devices, with automated updates to ensure protection against the latest threats. This mitigation can be implemented through the following measures: Signature-Based Detection: - Implementation: Use predefined signatures to identify known malware based on unique patterns such as file hashes, byte sequences, or command-line arguments. This method is effective against known threats. - Use Case: When malware like "Emotet" is detected, its signature (such as a specific file hash) matches a known database of malicious software, triggering an alert and allowing immediate quarantine of the infected file. Heuristic-Based Detection: - Implementation: Deploy heuristic algorithms that analyze behavior and characteristics of files and processes to identify potential malware, even if it doesn’t match a known signature. - Use Case: If a program attempts to modify multiple critical system files or initiate suspicious network communications, heuristic analysis may flag it as potentially malicious, even if no specific malware signature is available. Behavioral Detection (Behavior Prevention): - Implementation: Use behavioral analysis to detect patterns of abnormal activities, such as unusual system calls, unauthorized file encryption, or attempts to escalate privileges. - Use Case: Behavioral analysis can detect ransomware attacks early by identifying behavior like mass file encryption, even before a specific ransomware signature has been identified. Real-Time Scanning: - Implementation: Enable real-time scanning to automatically inspect files and network traffic for signs of malware as they are accessed, downloaded, or executed. - Use Case: When a user downloads an email attachment, the antivirus solution scans the file in real-time, checking it against both signatures and heuristics to detect any malicious content before it can be opened. Cloud-Assisted Threat Intelligence: - Implementation: Use cloud-based threat intelligence to ensure the antivirus solution can access the latest malware definitions and real-time threat feeds from a global database of emerging threats. - Use Case: Cloud-assisted antivirus solutions quickly identify newly discovered malware by cross-referencing against global threat databases, providing real-time protection against zero-day attacks. **Tools for Implementation**: - Endpoint Security Platforms: Use solutions such as EDR for comprehensive antivirus/antimalware protection across all systems. - Centralized Management: Implement centralized antivirus management consoles that provide visibility into threat activity, enable policy enforcement, and automate updates. - Behavioral Analysis Tools: Leverage solutions with advanced behavioral analysis capabilities to detect malicious activity patterns that don’t rely on known signatures.

Execution Prevention

Prevent the execution of unauthorized or malicious code on systems by implementing application control, script blocking, and other execution prevention mechanisms. This ensures that only trusted and authorized code is executed, reducing the risk of malware and unauthorized actions. This mitigation can be implemented through the following measures: Application Control: - Use Case: Use tools like AppLocker or Windows Defender Application Control (WDAC) to create whitelists of authorized applications and block unauthorized ones. On Linux, use tools like SELinux or AppArmor to define mandatory access control policies for application execution. - Implementation: Allow only digitally signed or pre-approved applications to execute on servers and endpoints. (e.g., `New-AppLockerPolicy -PolicyType Enforced -FilePath "C:\Policies\AppLocker.xml"`) Script Blocking: - Use Case: Use script control mechanisms to block unauthorized execution of scripts, such as PowerShell or JavaScript. Web Browsers: Use browser extensions or settings to block JavaScript execution from untrusted sources. - Implementation: Configure PowerShell to enforce Constrained Language Mode for non-administrator users. (e.g., `Set-ExecutionPolicy AllSigned`) Executable Blocking: - Use Case: Prevent execution of binaries from suspicious locations, such as `%TEMP%` or `%APPDATA%` directories. - Implementation: Block execution of `.exe`, `.bat`, or `.ps1` files from user-writable directories. Dynamic Analysis Prevention: - Use Case: Use behavior-based execution prevention tools to identify and block malicious activity in real time. - Implemenation: Employ EDR solutions that analyze runtime behavior and block suspicious code execution.

Detection

Loading, unloading, and manipulating modules on Linux systems can be detected by monitoring for the following commands: modprobe, insmod, lsmod, rmmod, or modinfo (Citation: Linux Loadable Kernel Module Insert and Remove LKMs) LKMs are typically loaded into /lib/modules and have had the extension .ko ("kernel object") since version 2.6 of the Linux kernel. (Citation: Wikipedia Loadable Kernel Module) Adversaries may run commands on the target system before loading a malicious module in order to ensure that it is properly compiled. (Citation: iDefense Rootkit Overview) Adversaries may also execute commands to identify the exact version of the running Linux kernel and/or download multiple versions of the same .ko (kernel object) files to use the one appropriate for the running system.(Citation: Trend Micro Skidmap) Many LKMs require Linux headers (specific to the target kernel) in order to compile properly. These are typically obtained through the operating systems package manager and installed like a normal package. On Ubuntu and Debian based systems this can be accomplished by running: apt-get install linux-headers-$(uname -r) On RHEL and CentOS based systems this can be accomplished by running: yum install kernel-devel-$(uname -r) On macOS, monitor for execution of kextload commands and user installed kernel extensions performing abnormal and/or potentially malicious activity (such as creating network connections). Monitor for new rows added in the kext_policy table. KextPolicy stores a list of user approved (non Apple) kernel extensions and a partial history of loaded kernel modules in a SQLite database, /var/db/SystemPolicyConfiguration/KextPolicy.(Citation: User Approved Kernel Extension Pike’s)(Citation: Purves Kextpocalypse 2)(Citation: Apple Developer Configuration Profile)

References

  1. Wikipedia. (2018, March 17). Loadable kernel module. Retrieved April 9, 2018.
  2. Wardle, P. (2017, September 8). High Sierra’s ‘Secure Kernel Extension Loading’ is Broken. Retrieved November 17, 2024.
  3. Wardle, P. (2015, April). Malware Persistence on OS X Yosemite. Retrieved April 6, 2018.
  4. Richard Purves. (2017, November 9). MDM and the Kextpocalypse . Retrieved September 23, 2021.
  5. Remillano, A., Urbanec, J. (2019, September 19). Skidmap Linux Malware Uses Rootkit Capabilities to Hide Cryptocurrency-Mining Payload. Retrieved June 4, 2020.
  6. Pomerantz, O., Salzman, P.. (2003, April 4). The Linux Kernel Module Programming Guide. Retrieved April 6, 2018.
  7. Pomerantz, O., Salzman, P. (2003, April 4). Modules vs Programs. Retrieved November 17, 2024.
  8. Pikeralpha. (2017, August 29). User Approved Kernel Extension Loading…. Retrieved September 23, 2021.
  9. Mikhail, K. (2014, October 16). The Ventir Trojan: assemble your MacOS spy. Retrieved April 6, 2018.
  10. Mello, V. (2018, March 8). Diamorphine - LMK rootkit for Linux Kernels 2.6.x/3.x/4.x (x86 and x86_64). Retrieved April 9, 2018.
  11. Kurtz, G. (2012, November 19). HTTP iframe Injecting Linux Rootkit. Retrieved December 21, 2017.
  12. Henderson, B. (2006, September 24). How To Insert And Remove LKMs. Retrieved November 17, 2024.
  13. Chuvakin, A. (2003, February). An Overview of Rootkits. Retrieved September 12, 2024.
  14. Case, A. (2012, October 10). Phalanx 2 Revealed: Using Volatility to Analyze an Advanced Linux Rootkit. Retrieved April 9, 2018.
  15. Augusto, I. (2018, March 8). Reptile - LMK Linux rootkit. Retrieved April 9, 2018.
  16. Apple. (n.d.). System and kernel extensions in macOS. Retrieved March 31, 2022.
  17. Apple. (n.d.). Deprecated Kernel Extensions and System Extension Alternatives. Retrieved November 4, 2020.
  18. Apple. (2019, May 3). Configuration Profile Reference. Retrieved September 23, 2021.
  19. NSA/FBI. (2020, August). Russian GRU 85th GTsSS Deploys Previously Undisclosed Drovorub Malware. Retrieved August 25, 2020.
  20. Apple. (2019, May 3). Configuration Profile Reference, Developer. Retrieved April 15, 2022.
  21. Apple. (2018, April 19). Technical Note TN2459: User-Approved Kernel Extension Loading. Retrieved June 30, 2020.
  22. Murilo, N., Steding-Jessen, K. (2017, August 23). Chkrootkit. Retrieved April 9, 2018.
  23. Rootkit Hunter Project. (2018, February 20). The Rootkit Hunter project. Retrieved April 9, 2018.
  24. Wikibooks. (2018, August 19). Grsecurity/The RBAC System. Retrieved June 4, 2020.
  25. Vander Stoep, J. (2016, April 5). [v3] selinux: restrict kernel module loadinglogin register. Retrieved April 9, 2018.
  26. Pingios, A.. (2018, February 7). LKM loading kernel restrictions. Retrieved June 4, 2020.
  27. Kernel.org. (2020, February 6). Kernel Self-Protection. Retrieved June 4, 2020.
  28. Boelen, M. (2015, October 7). Increase kernel integrity with disabled Linux kernel modules loading. Retrieved June 4, 2020.
  29. Cybereason Nocturnus. (2022, May 4). Operation CuckooBees: Deep-Dive into Stealthy Winnti Techniques. Retrieved September 22, 2022.

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.