Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Hide Artifacts:  Run Virtual Instance

Adversaries may carry out malicious operations using a virtual instance to avoid detection. A wide variety of virtualization technologies exist that allow for the emulation of a computer or computing environment. By running malicious code inside of a virtual instance, adversaries can hide artifacts associated with their behavior from security tools that are unable to monitor activity inside the virtual instance.(Citation: CyberCX Akira Ransomware) Additionally, depending on the virtual networking implementation (ex: bridged adapter), network traffic generated by the virtual instance can be difficult to trace back to the compromised host as the IP address and hostname might not match known values.(Citation: SingHealth Breach Jan 2019) Adversaries may utilize native support for virtualization (ex: Hyper-V) or drop the necessary files to run a virtual instance (ex: VirtualBox binaries). After running a virtual instance, adversaries may create a shared folder between the guest and host with permissions that enable the virtual instance to interact with the host file system.(Citation: Sophos Ragnar May 2020) In VMWare environments, adversaries may leverage the vCenter console to create new virtual machines. However, they may also create virtual machines directly on ESXi servers by running a valid `.vmx` file with the `/bin/vmx` utility. Adding this command to `/etc/rc.local.d/local.sh` (i.e., RC Scripts) will cause the VM to persistently restart.(Citation: vNinja Rogue VMs 2024) Creating a VM this way prevents it from appearing in the vCenter console or in the output to the `vim-cmd vmsvc/getallvms` command on the ESXi server, thereby hiding it from typical administrative activities.(Citation: MITRE VMware Abuse 2024)

ID: T1564.006
Sub-technique of:  T1564
Tactic(s): Defense Evasion
Platforms: ESXi, Linux, macOS, Windows
Data Sources: Command: Command Execution, File: File Creation, Image: Image Metadata, Process: Process Creation, Service: Service Creation, Windows Registry: Windows Registry Key Modification
Version: 1.2
Created: 29 Jun 2020
Last Modified: 15 Apr 2025

Procedure Examples

Name Description
Maze

Maze operators have used VirtualBox and a Windows 7 virtual machine to run the ransomware; the virtual machine's configuration file mapped the shared network drives of the target company, presumably so Maze can encrypt files on the shared drives as well as the local machine.(Citation: Sophos Maze VM September 2020)

Ragnar Locker

Ragnar Locker has used VirtualBox and a stripped Windows XP virtual machine to run itself. The use of a shared folder specified in the configuration enables Ragnar Locker to encrypt files on the host operating system, including files on any mapped drives.(Citation: Sophos Ragnar May 2020)

LoudMiner

LoudMiner has used QEMU and VirtualBox to run a Tiny Core Linux virtual machine, which runs XMRig and makes connections to the C2 server for updates.(Citation: ESET LoudMiner June 2019)

Mitigations

Mitigation Description
Disable or Remove Feature or Program

Disable or remove unnecessary and potentially vulnerable software, features, or services to reduce the attack surface and prevent abuse by adversaries. This involves identifying software or features that are no longer needed or that could be exploited and ensuring they are either removed or properly disabled. This mitigation can be implemented through the following measures: Remove Legacy Software: - Use Case: Disable or remove older versions of software that no longer receive updates or security patches (e.g., legacy Java, Adobe Flash). - Implementation: A company removes Flash Player from all employee systems after it has reached its end-of-life date. Disable Unused Features: - Use Case: Turn off unnecessary operating system features like SMBv1, Telnet, or RDP if they are not required. - Implementation: Disable SMBv1 in a Windows environment to mitigate vulnerabilities like EternalBlue. Control Applications Installed by Users: - Use Case: Prevent users from installing unauthorized software via group policies or other management tools. - Implementation: Block user installations of unauthorized file-sharing applications (e.g., BitTorrent clients) in an enterprise environment. Remove Unnecessary Services: - Use Case: Identify and disable unnecessary default services running on endpoints, servers, or network devices. - Implementation: Disable unused administrative shares (e.g., C$, ADMIN$) on workstations. Restrict Add-ons and Plugins: - Use Case: Remove or disable browser plugins and add-ons that are not needed for business purposes. - Implementation: Disable Java and ActiveX plugins in web browsers to prevent drive-by attacks.

Audit

Auditing is the process of recording activity and systematically reviewing and analyzing the activity and system configurations. The primary purpose of auditing is to detect anomalies and identify potential threats or weaknesses in the environment. Proper auditing configurations can also help to meet compliance requirements. The process of auditing encompasses regular analysis of user behaviors and system logs in support of proactive security measures. Auditing is applicable to all systems used within an organization, from the front door of a building to accessing a file on a fileserver. It is considered more critical for regulated industries such as, healthcare, finance and government where compliance requirements demand stringent tracking of user and system activates.This mitigation can be implemented through the following measures: System Audit: - Use Case: Regularly assess system configurations to ensure compliance with organizational security policies. - Implementation: Use tools to scan for deviations from established benchmarks. Permission Audits: - Use Case: Review file and folder permissions to minimize the risk of unauthorized access or privilege escalation. - Implementation: Run access reviews to identify users or groups with excessive permissions. Software Audits: - Use Case: Identify outdated, unsupported, or insecure software that could serve as an attack vector. - Implementation: Use inventory and vulnerability scanning tools to detect outdated versions and recommend secure alternatives. Configuration Audits: - Use Case: Evaluate system and network configurations to ensure secure settings (e.g., disabled SMBv1, enabled MFA). - Implementation: Implement automated configuration scanning tools like SCAP (Security Content Automation Protocol) to identify non-compliant systems. Network Audits: - Use Case: Examine network traffic, firewall rules, and endpoint communications to identify unauthorized or insecure connections. - Implementation: Utilize tools such as Wireshark, or Zeek to monitor and log suspicious network behavior.

Execution Prevention

Prevent the execution of unauthorized or malicious code on systems by implementing application control, script blocking, and other execution prevention mechanisms. This ensures that only trusted and authorized code is executed, reducing the risk of malware and unauthorized actions. This mitigation can be implemented through the following measures: Application Control: - Use Case: Use tools like AppLocker or Windows Defender Application Control (WDAC) to create whitelists of authorized applications and block unauthorized ones. On Linux, use tools like SELinux or AppArmor to define mandatory access control policies for application execution. - Implementation: Allow only digitally signed or pre-approved applications to execute on servers and endpoints. (e.g., `New-AppLockerPolicy -PolicyType Enforced -FilePath "C:\Policies\AppLocker.xml"`) Script Blocking: - Use Case: Use script control mechanisms to block unauthorized execution of scripts, such as PowerShell or JavaScript. Web Browsers: Use browser extensions or settings to block JavaScript execution from untrusted sources. - Implementation: Configure PowerShell to enforce Constrained Language Mode for non-administrator users. (e.g., `Set-ExecutionPolicy AllSigned`) Executable Blocking: - Use Case: Prevent execution of binaries from suspicious locations, such as `%TEMP%` or `%APPDATA%` directories. - Implementation: Block execution of `.exe`, `.bat`, or `.ps1` files from user-writable directories. Dynamic Analysis Prevention: - Use Case: Use behavior-based execution prevention tools to identify and block malicious activity in real time. - Implemenation: Employ EDR solutions that analyze runtime behavior and block suspicious code execution.

Detection

Consider monitoring for files and processes associated with running a virtual instance, such as binary files associated with common virtualization technologies (ex: VirtualBox, VMware, QEMU, Hyper-V). Consider monitoring the size of virtual machines running on the system. Adversaries may create virtual images which are smaller than those of typical virtual machines.(Citation: Shadowbunny VM Defense Evasion) Network adapter information may also be helpful in detecting the use of virtual instances. Consider monitoring for process command-line arguments that may be atypical for benign use of virtualization software. Usage of virtualization binaries or command-line arguments associated with running a silent installation may be especially suspect (ex. -silent, -ignore-reboot), as well as those associated with running a headless (in the background with no UI) virtual instance (ex. VBoxManage startvm $VM --type headless).(Citation: Shadowbunny VM Defense Evasion) Similarly, monitoring command line arguments which suppress notifications may highlight potentially malicious activity (ex. VBoxManage.exe setextradata global GUI/SuppressMessages "all"). Monitor for commands which enable hypervisors such as Hyper-V. If virtualization software is installed by the adversary, the Registry may provide detection opportunities. Consider monitoring for Windows Service, with respect to virtualization software. Benign usage of virtualization technology is common in enterprise environments, data and events should not be viewed in isolation, but as part of a chain of behavior.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.