Управление контейнерами
Adversaries may abuse a container administration service to execute commands within a container. A container administration service such as the Docker daemon, the Kubernetes API server, or the kubelet may allow remote management of containers within an environment.(Citation: Docker Daemon CLI)(Citation: Kubernetes API)(Citation: Kubernetes Kubelet)
In Docker, adversaries may specify an entrypoint during container deployment that executes a script or command, or they may use a command such as docker exec
to execute a command within a running container.(Citation: Docker Entrypoint)(Citation: Docker Exec) In Kubernetes, if an adversary has sufficient permissions, they may gain remote execution in a container in the cluster via interaction with the Kubernetes API server, the kubelet, or by running a command such as kubectl exec
.(Citation: Kubectl Exec Get Shell)
Примеры процедур |
|
Название | Описание |
---|---|
TeamTNT |
TeamTNT executed Hildegard through the kubelet API run command and by executing commands on running containers.(Citation: Unit 42 Hildegard Malware) |
Peirates |
Peirates can use `kubectl` or the Kubernetes API to run commands.(Citation: Peirates GitHub) |
Hildegard |
Hildegard was executed through the kubelet API run command and by executing commands on running containers.(Citation: Unit 42 Hildegard Malware) |
Siloscape |
Siloscape can send kubectl commands to victim clusters through an IRC channel and can run kubectl locally to spread once within a victim cluster.(Citation: Unit 42 Siloscape Jun 2021) |
Kinsing |
Kinsing was executed with an Ubuntu container entry point that runs shell scripts.(Citation: Aqua Kinsing April 2020) |
Контрмеры |
|
Контрмера | Описание |
---|---|
User Account Management |
User Account Management involves implementing and enforcing policies for the lifecycle of user accounts, including creation, modification, and deactivation. Proper account management reduces the attack surface by limiting unauthorized access, managing account privileges, and ensuring accounts are used according to organizational policies. This mitigation can be implemented through the following measures: Enforcing the Principle of Least Privilege - Implementation: Assign users only the minimum permissions required to perform their job functions. Regularly audit accounts to ensure no excess permissions are granted. - Use Case: Reduces the risk of privilege escalation by ensuring accounts cannot perform unauthorized actions. Implementing Strong Password Policies - Implementation: Enforce password complexity requirements (e.g., length, character types). Require password expiration every 90 days and disallow password reuse. - Use Case: Prevents adversaries from gaining unauthorized access through password guessing or brute force attacks. Managing Dormant and Orphaned Accounts - Implementation: Implement automated workflows to disable accounts after a set period of inactivity (e.g., 30 days). Remove orphaned accounts (e.g., accounts without an assigned owner) during regular account audits. - Use Case: Eliminates dormant accounts that could be exploited by attackers. Account Lockout Policies - Implementation: Configure account lockout thresholds (e.g., lock accounts after five failed login attempts). Set lockout durations to a minimum of 15 minutes. - Use Case: Mitigates automated attack techniques that rely on repeated login attempts. Multi-Factor Authentication (MFA) for High-Risk Accounts - Implementation: Require MFA for all administrative accounts and high-risk users. Use MFA mechanisms like hardware tokens, authenticator apps, or biometrics. - Use Case: Prevents unauthorized access, even if credentials are stolen. Restricting Interactive Logins - Implementation: Restrict interactive logins for privileged accounts to specific secure systems or management consoles. Use group policies to enforce logon restrictions. - Use Case: Protects sensitive accounts from misuse or exploitation. *Tools for Implementation* Built-in Tools: - Microsoft Active Directory (AD): Centralized account management and RBAC enforcement. - Group Policy Object (GPO): Enforce password policies, logon restrictions, and account lockout policies. Identity and Access Management (IAM) Tools: - Okta: Centralized user provisioning, MFA, and SSO integration. - Microsoft Azure Active Directory: Provides advanced account lifecycle management, role-based access, and conditional access policies. Privileged Account Management (PAM): - CyberArk, BeyondTrust, Thycotic: Manage and monitor privileged account usage, enforce session recording, and JIT access. |
Privileged Account Management |
Privileged Account Management focuses on implementing policies, controls, and tools to securely manage privileged accounts (e.g., SYSTEM, root, or administrative accounts). This includes restricting access, limiting the scope of permissions, monitoring privileged account usage, and ensuring accountability through logging and auditing.This mitigation can be implemented through the following measures: Account Permissions and Roles: - Implement RBAC and least privilege principles to allocate permissions securely. - Use tools like Active Directory Group Policies to enforce access restrictions. Credential Security: - Deploy password vaulting tools like CyberArk, HashiCorp Vault, or KeePass for secure storage and rotation of credentials. - Enforce password policies for complexity, uniqueness, and expiration using tools like Microsoft Group Policy Objects (GPO). Multi-Factor Authentication (MFA): - Enforce MFA for all privileged accounts using Duo Security, Okta, or Microsoft Azure AD MFA. Privileged Access Management (PAM): - Use PAM solutions like CyberArk, BeyondTrust, or Thycotic to manage, monitor, and audit privileged access. Auditing and Monitoring: - Integrate activity monitoring into your SIEM (e.g., Splunk or QRadar) to detect and alert on anomalous privileged account usage. Just-In-Time Access: - Deploy JIT solutions like Azure Privileged Identity Management (PIM) or configure ephemeral roles in AWS and GCP to grant time-limited elevated permissions. *Tools for Implementation* Privileged Access Management (PAM): - CyberArk, BeyondTrust, Thycotic, HashiCorp Vault. Credential Management: - Microsoft LAPS (Local Admin Password Solution), Password Safe, HashiCorp Vault, KeePass. Multi-Factor Authentication: - Duo Security, Okta, Microsoft Azure MFA, Google Authenticator. Linux Privilege Management: - sudo configuration, SELinux, AppArmor. Just-In-Time Access: - Azure Privileged Identity Management (PIM), AWS IAM Roles with session constraints, GCP Identity-Aware Proxy. |
Disable or Remove Feature or Program |
Disable or remove unnecessary and potentially vulnerable software, features, or services to reduce the attack surface and prevent abuse by adversaries. This involves identifying software or features that are no longer needed or that could be exploited and ensuring they are either removed or properly disabled. This mitigation can be implemented through the following measures: Remove Legacy Software: - Use Case: Disable or remove older versions of software that no longer receive updates or security patches (e.g., legacy Java, Adobe Flash). - Implementation: A company removes Flash Player from all employee systems after it has reached its end-of-life date. Disable Unused Features: - Use Case: Turn off unnecessary operating system features like SMBv1, Telnet, or RDP if they are not required. - Implementation: Disable SMBv1 in a Windows environment to mitigate vulnerabilities like EternalBlue. Control Applications Installed by Users: - Use Case: Prevent users from installing unauthorized software via group policies or other management tools. - Implementation: Block user installations of unauthorized file-sharing applications (e.g., BitTorrent clients) in an enterprise environment. Remove Unnecessary Services: - Use Case: Identify and disable unnecessary default services running on endpoints, servers, or network devices. - Implementation: Disable unused administrative shares (e.g., C$, ADMIN$) on workstations. Restrict Add-ons and Plugins: - Use Case: Remove or disable browser plugins and add-ons that are not needed for business purposes. - Implementation: Disable Java and ActiveX plugins in web browsers to prevent drive-by attacks. |
Limit Access to Resource Over Network |
Restrict access to network resources, such as file shares, remote systems, and services, to only those users, accounts, or systems with a legitimate business requirement. This can include employing technologies like network concentrators, RDP gateways, and zero-trust network access (ZTNA) models, alongside hardening services and protocols. This mitigation can be implemented through the following measures: Audit and Restrict Access: - Regularly audit permissions for file shares, network services, and remote access tools. - Remove unnecessary access and enforce least privilege principles for users and services. - Use Active Directory and IAM tools to restrict access based on roles and attributes. Deploy Secure Remote Access Solutions: - Use RDP gateways, VPN concentrators, and ZTNA solutions to aggregate and secure remote access connections. - Configure access controls to restrict connections based on time, device, and user identity. - Enforce MFA for all remote access mechanisms. Disable Unnecessary Services: - Identify running services using tools like netstat (Windows/Linux) or Nmap. - Disable unused services, such as Telnet, FTP, and legacy SMB, to reduce the attack surface. - Use firewall rules to block traffic on unused ports and protocols. Network Segmentation and Isolation: - Use VLANs, firewalls, or micro-segmentation to isolate critical network resources from general access. - Restrict communication between subnets to prevent lateral movement. Monitor and Log Access: - Monitor access attempts to file shares, RDP, and remote network resources using SIEM tools. - Enable auditing and logging for successful and failed attempts to access restricted resources. *Tools for Implementation* File Share Management: - Microsoft Active Directory Group Policies - Samba (Linux/Unix file share management) - AccessEnum (Windows access auditing tool) Secure Remote Access: - Microsoft Remote Desktop Gateway - Apache Guacamole (open-source RDP/VNC gateway) - Zero Trust solutions: Tailscale, Cloudflare Zero Trust Service and Protocol Hardening: - Nmap or Nessus for network service discovery - Windows Group Policy Editor for disabling SMBv1, Telnet, and legacy protocols - iptables or firewalld (Linux) for blocking unnecessary traffic Network Segmentation: - pfSense for open-source network isolation |
Execution Prevention |
Prevent the execution of unauthorized or malicious code on systems by implementing application control, script blocking, and other execution prevention mechanisms. This ensures that only trusted and authorized code is executed, reducing the risk of malware and unauthorized actions. This mitigation can be implemented through the following measures: Application Control: - Use Case: Use tools like AppLocker or Windows Defender Application Control (WDAC) to create whitelists of authorized applications and block unauthorized ones. On Linux, use tools like SELinux or AppArmor to define mandatory access control policies for application execution. - Implementation: Allow only digitally signed or pre-approved applications to execute on servers and endpoints. (e.g., `New-AppLockerPolicy -PolicyType Enforced -FilePath "C:\Policies\AppLocker.xml"`) Script Blocking: - Use Case: Use script control mechanisms to block unauthorized execution of scripts, such as PowerShell or JavaScript. Web Browsers: Use browser extensions or settings to block JavaScript execution from untrusted sources. - Implementation: Configure PowerShell to enforce Constrained Language Mode for non-administrator users. (e.g., `Set-ExecutionPolicy AllSigned`) Executable Blocking: - Use Case: Prevent execution of binaries from suspicious locations, such as `%TEMP%` or `%APPDATA%` directories. - Implementation: Block execution of `.exe`, `.bat`, or `.ps1` files from user-writable directories. Dynamic Analysis Prevention: - Use Case: Use behavior-based execution prevention tools to identify and block malicious activity in real time. - Implemenation: Employ EDR solutions that analyze runtime behavior and block suspicious code execution. |
Обнаружение
Container administration service activities and executed commands can be captured through logging of process execution with command-line arguments on the container and the underlying host. In Docker, the daemon log provides insight into events at the daemon and container service level. Kubernetes system component logs may also detect activities running in and out of containers in the cluster.
Ссылки
- The Kubernetes Authors. (n.d.). The Kubernetes API. Retrieved March 29, 2021.
- The Kubernetes Authors. (n.d.). Kubelet. Retrieved March 29, 2021.
- The Kubernetes Authors. (n.d.). Get a Shell to a Running Container. Retrieved March 29, 2021.
- Docker. (n.d.). DockerD CLI. Retrieved March 29, 2021.
- Docker. (n.d.). Docker run reference. Retrieved March 29, 2021.
- Docker. (n.d.). Docker Exec. Retrieved March 29, 2021.
- Chen, J. et al. (2021, February 3). Hildegard: New TeamTNT Cryptojacking Malware Targeting Kubernetes. Retrieved April 5, 2021.
- InGuardians. (2022, January 5). Peirates GitHub. Retrieved February 8, 2022.
- National Security Agency, Cybersecurity and Infrastructure Security Agency. (2022, March). Kubernetes Hardening Guide. Retrieved April 1, 2022.
- Kubernetes. (n.d.). Role Based Access Control Good Practices. Retrieved March 8, 2023.
- Kubernetes. (n.d.). Admission Controllers Reference. Retrieved March 8, 2023.
- Prizmant, D. (2021, June 7). Siloscape: First Known Malware Targeting Windows Containers to Compromise Cloud Environments. Retrieved June 9, 2021.
- Singer, G. (2020, April 3). Threat Alert: Kinsing Malware Attacks Targeting Container Environments. Retrieved April 1, 2021.
- The Kubernetes Authors. (n.d.). Controlling Access to The Kubernetes API. Retrieved March 29, 2021.
- Microsoft. (2023, February 27). AKS-managed Azure Active Directory integration. Retrieved March 8, 2023.
- Kubernetes. (n.d.). Overview of Cloud Native Security. Retrieved March 8, 2023.
- Docker. (n.d.). Protect the Docker Daemon Socket. Retrieved March 29, 2021.
- Kubernetes. (n.d.). Configure a Security Context for a Pod or Container. Retrieved March 8, 2023.
Связанные риски
Каталоги
Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.