Office Application Startup
Sub-techniques (6)
Adversaries may leverage Microsoft Office-based applications for persistence between startups. Microsoft Office is a fairly common application suite on Windows-based operating systems within an enterprise network. There are multiple mechanisms that can be used with Office for persistence when an Office-based application is started; this can include the use of Office Template Macros and add-ins. A variety of features have been discovered in Outlook that can be abused to obtain persistence, such as Outlook rules, forms, and Home Page.(Citation: SensePost Ruler GitHub) These persistence mechanisms can work within Outlook or be used through Office 365.(Citation: TechNet O365 Outlook Rules)
Procedure Examples |
|
Name | Description |
---|---|
APT32 |
APT32 have replaced Microsoft Outlook's VbaProject.OTM file to install a backdoor macro for persistence.(Citation: Cybereason Oceanlotus May 2017)(Citation: Cybereason Cobalt Kitty 2017) |
Gamaredon Group |
Gamaredon Group has inserted malicious macros into existing documents, providing persistence when they are reopened. Gamaredon Group has loaded the group's previously delivered VBA project by relaunching Microsoft Outlook with the |
Mitigations |
|
Mitigation | Description |
---|---|
Disable or Remove Feature or Program |
Disable or remove unnecessary and potentially vulnerable software, features, or services to reduce the attack surface and prevent abuse by adversaries. This involves identifying software or features that are no longer needed or that could be exploited and ensuring they are either removed or properly disabled. This mitigation can be implemented through the following measures: Remove Legacy Software: - Use Case: Disable or remove older versions of software that no longer receive updates or security patches (e.g., legacy Java, Adobe Flash). - Implementation: A company removes Flash Player from all employee systems after it has reached its end-of-life date. Disable Unused Features: - Use Case: Turn off unnecessary operating system features like SMBv1, Telnet, or RDP if they are not required. - Implementation: Disable SMBv1 in a Windows environment to mitigate vulnerabilities like EternalBlue. Control Applications Installed by Users: - Use Case: Prevent users from installing unauthorized software via group policies or other management tools. - Implementation: Block user installations of unauthorized file-sharing applications (e.g., BitTorrent clients) in an enterprise environment. Remove Unnecessary Services: - Use Case: Identify and disable unnecessary default services running on endpoints, servers, or network devices. - Implementation: Disable unused administrative shares (e.g., C$, ADMIN$) on workstations. Restrict Add-ons and Plugins: - Use Case: Remove or disable browser plugins and add-ons that are not needed for business purposes. - Implementation: Disable Java and ActiveX plugins in web browsers to prevent drive-by attacks. |
Behavior Prevention on Endpoint |
Behavior Prevention on Endpoint refers to the use of technologies and strategies to detect and block potentially malicious activities by analyzing the behavior of processes, files, API calls, and other endpoint events. Rather than relying solely on known signatures, this approach leverages heuristics, machine learning, and real-time monitoring to identify anomalous patterns indicative of an attack. This mitigation can be implemented through the following measures: Suspicious Process Behavior: - Implementation: Use Endpoint Detection and Response (EDR) tools to monitor and block processes exhibiting unusual behavior, such as privilege escalation attempts. - Use Case: An attacker uses a known vulnerability to spawn a privileged process from a user-level application. The endpoint tool detects the abnormal parent-child process relationship and blocks the action. Unauthorized File Access: - Implementation: Leverage Data Loss Prevention (DLP) or endpoint tools to block processes attempting to access sensitive files without proper authorization. - Use Case: A process tries to read or modify a sensitive file located in a restricted directory, such as /etc/shadow on Linux or the SAM registry hive on Windows. The endpoint tool identifies this anomalous behavior and prevents it. Abnormal API Calls: - Implementation: Implement runtime analysis tools to monitor API calls and block those associated with malicious activities. - Use Case: A process dynamically injects itself into another process to hijack its execution. The endpoint detects the abnormal use of APIs like `OpenProcess` and `WriteProcessMemory` and terminates the offending process. Exploit Prevention: - Implementation: Use behavioral exploit prevention tools to detect and block exploits attempting to gain unauthorized access. - Use Case: A buffer overflow exploit is launched against a vulnerable application. The endpoint detects the anomalous memory write operation and halts the process. |
Update Software |
Software updates ensure systems are protected against known vulnerabilities by applying patches and upgrades provided by vendors. Regular updates reduce the attack surface and prevent adversaries from exploiting known security gaps. This includes patching operating systems, applications, drivers, and firmware. This mitigation can be implemented through the following measures: Regular Operating System Updates - Implementation: Apply the latest Windows security updates monthly using WSUS (Windows Server Update Services) or a similar patch management solution. Configure systems to check for updates automatically and schedule reboots during maintenance windows. - Use Case: Prevents exploitation of OS vulnerabilities such as privilege escalation or remote code execution. Application Patching - Implementation: Monitor Apache's update release notes for security patches addressing vulnerabilities. Schedule updates for off-peak hours to avoid downtime while maintaining security compliance. - Use Case: Prevents exploitation of web application vulnerabilities, such as those leading to unauthorized access or data breaches. Firmware Updates - Implementation: Regularly check the vendor’s website for firmware updates addressing vulnerabilities. Plan for update deployment during scheduled maintenance to minimize business disruption. - Use Case: Protects against vulnerabilities that adversaries could exploit to gain access to network devices or inject malicious traffic. Emergency Patch Deployment - Implementation: Use the emergency patch deployment feature of the organization's patch management tool to apply updates to all affected Exchange servers within 24 hours. - Use Case: Reduces the risk of exploitation by rapidly addressing critical vulnerabilities. Centralized Patch Management - Implementation: Implement a centralized patch management system, such as SCCM or ManageEngine, to automate and track patch deployment across all environments. Generate regular compliance reports to ensure all systems are updated. - Use Case: Streamlines patching processes and ensures no critical systems are missed. *Tools for Implementation* Patch Management Tools: - WSUS: Manage and deploy Microsoft updates across the organization. - ManageEngine Patch Manager Plus: Automate patch deployment for OS and third-party apps. - Ansible: Automate updates across multiple platforms, including Linux and Windows. Vulnerability Scanning Tools: - OpenVAS: Open-source vulnerability scanning to identify missing patches. |
Software Configuration |
Software configuration refers to making security-focused adjustments to the settings of applications, middleware, databases, or other software to mitigate potential threats. These changes help reduce the attack surface, enforce best practices, and protect sensitive data. This mitigation can be implemented through the following measures: Conduct a Security Review of Application Settings: - Review the software documentation to identify recommended security configurations. - Compare default settings against organizational policies and compliance requirements. Implement Access Controls and Permissions: - Restrict access to sensitive features or data within the software. - Enforce least privilege principles for all roles and accounts interacting with the software. Enable Logging and Monitoring: - Configure detailed logging for key application events such as authentication failures, configuration changes, or unusual activity. - Integrate logs with a centralized monitoring solution, such as a SIEM. Update and Patch Software Regularly: - Ensure the software is kept up-to-date with the latest security patches to address known vulnerabilities. - Use automated patch management tools to streamline the update process. Disable Unnecessary Features or Services: - Turn off unused functionality or components that could introduce vulnerabilities, such as debugging interfaces or deprecated APIs. Test Configuration Changes: - Perform configuration changes in a staging environment before applying them in production. - Conduct regular audits to ensure that settings remain aligned with security policies. *Tools for Implementation* Configuration Management Tools: - Ansible: Automates configuration changes across multiple applications and environments. - Chef: Ensures consistent application settings through code-based configuration management. - Puppet: Automates software configurations and audits changes for compliance. Security Benchmarking Tools: - CIS-CAT: Provides benchmarks and audits for secure software configurations. - Aqua Security Trivy: Scans containerized applications for configuration issues. Vulnerability Management Solutions: - Nessus: Identifies misconfigurations and suggests corrective actions. Logging and Monitoring Tools: - Splunk: Aggregates and analyzes application logs to detect suspicious activity. |
Detection
Collect process execution information including process IDs (PID) and parent process IDs (PPID) and look for abnormal chains of activity resulting from Office processes. Non-standard process execution trees may also indicate suspicious or malicious behavior. If winword.exe is the parent process for suspicious processes and activity relating to other adversarial techniques, then it could indicate that the application was used maliciously. Many Office-related persistence mechanisms require changes to the Registry and for binaries, files, or scripts to be written to disk or existing files modified to include malicious scripts. Collect events related to Registry key creation and modification for keys that could be used for Office-based persistence.(Citation: CrowdStrike Outlook Forms)(Citation: Outlook Today Home Page) Microsoft has released a PowerShell script to safely gather mail forwarding rules and custom forms in your mail environment as well as steps to interpret the output.(Citation: Microsoft Detect Outlook Forms) SensePost, whose tool Ruler can be used to carry out malicious rules, forms, and Home Page attacks, has released a tool to detect Ruler usage.(Citation: SensePost NotRuler)
References
- Soutcast. (2018, September 14). Outlook Today Homepage Persistence. Retrieved February 5, 2019.
- SensePost. (2017, September 21). NotRuler - The opposite of Ruler, provides blue teams with the ability to detect Ruler usage against Exchange. Retrieved February 4, 2019.
- SensePost. (2016, August 18). Ruler: A tool to abuse Exchange services. Retrieved February 4, 2019.
- Parisi, T., et al. (2017, July). Using Outlook Forms for Lateral Movement and Persistence. Retrieved February 5, 2019.
- Koeller, B.. (2018, February 21). Defending Against Rules and Forms Injection. Retrieved November 5, 2019.
- Fox, C., Vangel, D. (2018, April 22). Detect and Remediate Outlook Rules and Custom Forms Injections Attacks in Office 365. Retrieved February 4, 2019.
- Knowles, W. (2017, April 21). Add-In Opportunities for Office Persistence. Retrieved November 17, 2024.
- Microsoft. (2021, July 2). Use attack surface reduction rules to prevent malware infection. Retrieved June 24, 2021.
- Stalmans, E. (2017, October 11). Outlook Home Page – Another Ruler Vector. Retrieved February 4, 2019.
- Stalmans, E. (2017, April 28). Outlook Forms and Shells. Retrieved February 4, 2019.
- Dahan, A. (2017). Operation Cobalt Kitty. Retrieved December 27, 2018.
- Dahan, A. (2017, May 24). OPERATION COBALT KITTY: A LARGE-SCALE APT IN ASIA CARRIED OUT BY THE OCEANLOTUS GROUP. Retrieved November 5, 2018.
- Falcone, R. (2016, July 20). Technical Walkthrough: Office Test Persistence Method Used In Recent Sofacy Attacks. Retrieved July 3, 2017.
- Boutin, J. (2020, June 11). Gamaredon group grows its game. Retrieved June 16, 2020.
Связанные риски
Каталоги
Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.