Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Credentials from Password Stores:  Password Managers

Adversaries may acquire user credentials from third-party password managers.(Citation: ise Password Manager February 2019) Password managers are applications designed to store user credentials, normally in an encrypted database. Credentials are typically accessible after a user provides a master password that unlocks the database. After the database is unlocked, these credentials may be copied to memory. These databases can be stored as files on disk.(Citation: ise Password Manager February 2019) Adversaries may acquire user credentials from password managers by extracting the master password and/or plain-text credentials from memory.(Citation: FoxIT Wocao December 2019)(Citation: Github KeeThief) Adversaries may extract credentials from memory via Exploitation for Credential Access.(Citation: NVD CVE-2019-3610) Adversaries may also try brute forcing via Password Guessing to obtain the master password of a password manager.(Citation: Cyberreason Anchor December 2019)

ID: T1555.005
Sub-technique of:  T1555
Tactic(s): Credential Access
Platforms: Linux, macOS, Windows
Data Sources: Command: Command Execution, File: File Access, Process: OS API Execution, Process: Process Access
Version: 1.1
Created: 22 Jan 2021
Last Modified: 15 Apr 2025

Procedure Examples

Name Description

During Operation Wocao, threat actors accessed and collected credentials from password managers.(Citation: FoxIT Wocao December 2019)

Threat Group-3390

Threat Group-3390 obtained a KeePass database from a compromised host.(Citation: Trend Micro DRBControl February 2020)

Indrik Spider

Indrik Spider has accessed and exported passwords from password managers.(Citation: Mandiant_UNC2165)

Fox Kitten

Fox Kitten has used scripts to access credential information from the KeePass database.(Citation: CISA AA20-259A Iran-Based Actor September 2020)

MarkiRAT

MarkiRAT can gather information from the Keepass password manager.(Citation: Kaspersky Ferocious Kitten Jun 2021)

Proton

Proton gathers credentials in files for 1password.(Citation: objsee mac malware 2017)

TrickBot

TrickBot can steal passwords from the KeePass open source password manager.(Citation: Cyberreason Anchor December 2019)

Operation Wocao

Operation Wocao has accessed and collected credentials from password managers.(Citation: FoxIT Wocao December 2019)

LAPSUS$

LAPSUS$ has accessed local password managers and databases to obtain further credentials from a compromised network.(Citation: NCC Group LAPSUS Apr 2022)

Mitigations

Mitigation Description
Update Software

Software updates ensure systems are protected against known vulnerabilities by applying patches and upgrades provided by vendors. Regular updates reduce the attack surface and prevent adversaries from exploiting known security gaps. This includes patching operating systems, applications, drivers, and firmware. This mitigation can be implemented through the following measures: Regular Operating System Updates - Implementation: Apply the latest Windows security updates monthly using WSUS (Windows Server Update Services) or a similar patch management solution. Configure systems to check for updates automatically and schedule reboots during maintenance windows. - Use Case: Prevents exploitation of OS vulnerabilities such as privilege escalation or remote code execution. Application Patching - Implementation: Monitor Apache's update release notes for security patches addressing vulnerabilities. Schedule updates for off-peak hours to avoid downtime while maintaining security compliance. - Use Case: Prevents exploitation of web application vulnerabilities, such as those leading to unauthorized access or data breaches. Firmware Updates - Implementation: Regularly check the vendor’s website for firmware updates addressing vulnerabilities. Plan for update deployment during scheduled maintenance to minimize business disruption. - Use Case: Protects against vulnerabilities that adversaries could exploit to gain access to network devices or inject malicious traffic. Emergency Patch Deployment - Implementation: Use the emergency patch deployment feature of the organization's patch management tool to apply updates to all affected Exchange servers within 24 hours. - Use Case: Reduces the risk of exploitation by rapidly addressing critical vulnerabilities. Centralized Patch Management - Implementation: Implement a centralized patch management system, such as SCCM or ManageEngine, to automate and track patch deployment across all environments. Generate regular compliance reports to ensure all systems are updated. - Use Case: Streamlines patching processes and ensures no critical systems are missed. *Tools for Implementation* Patch Management Tools: - WSUS: Manage and deploy Microsoft updates across the organization. - ManageEngine Patch Manager Plus: Automate patch deployment for OS and third-party apps. - Ansible: Automate updates across multiple platforms, including Linux and Windows. Vulnerability Scanning Tools: - OpenVAS: Open-source vulnerability scanning to identify missing patches.

User Account Management

User Account Management involves implementing and enforcing policies for the lifecycle of user accounts, including creation, modification, and deactivation. Proper account management reduces the attack surface by limiting unauthorized access, managing account privileges, and ensuring accounts are used according to organizational policies. This mitigation can be implemented through the following measures: Enforcing the Principle of Least Privilege - Implementation: Assign users only the minimum permissions required to perform their job functions. Regularly audit accounts to ensure no excess permissions are granted. - Use Case: Reduces the risk of privilege escalation by ensuring accounts cannot perform unauthorized actions. Implementing Strong Password Policies - Implementation: Enforce password complexity requirements (e.g., length, character types). Require password expiration every 90 days and disallow password reuse. - Use Case: Prevents adversaries from gaining unauthorized access through password guessing or brute force attacks. Managing Dormant and Orphaned Accounts - Implementation: Implement automated workflows to disable accounts after a set period of inactivity (e.g., 30 days). Remove orphaned accounts (e.g., accounts without an assigned owner) during regular account audits. - Use Case: Eliminates dormant accounts that could be exploited by attackers. Account Lockout Policies - Implementation: Configure account lockout thresholds (e.g., lock accounts after five failed login attempts). Set lockout durations to a minimum of 15 minutes. - Use Case: Mitigates automated attack techniques that rely on repeated login attempts. Multi-Factor Authentication (MFA) for High-Risk Accounts - Implementation: Require MFA for all administrative accounts and high-risk users. Use MFA mechanisms like hardware tokens, authenticator apps, or biometrics. - Use Case: Prevents unauthorized access, even if credentials are stolen. Restricting Interactive Logins - Implementation: Restrict interactive logins for privileged accounts to specific secure systems or management consoles. Use group policies to enforce logon restrictions. - Use Case: Protects sensitive accounts from misuse or exploitation. *Tools for Implementation* Built-in Tools: - Microsoft Active Directory (AD): Centralized account management and RBAC enforcement. - Group Policy Object (GPO): Enforce password policies, logon restrictions, and account lockout policies. Identity and Access Management (IAM) Tools: - Okta: Centralized user provisioning, MFA, and SSO integration. - Microsoft Azure Active Directory: Provides advanced account lifecycle management, role-based access, and conditional access policies. Privileged Account Management (PAM): - CyberArk, BeyondTrust, Thycotic: Manage and monitor privileged account usage, enforce session recording, and JIT access.

User Training

User Training involves educating employees and contractors on recognizing, reporting, and preventing cyber threats that rely on human interaction, such as phishing, social engineering, and other manipulative techniques. Comprehensive training programs create a human firewall by empowering users to be an active component of the organization's cybersecurity defenses. This mitigation can be implemented through the following measures: Create Comprehensive Training Programs: - Design training modules tailored to the organization's risk profile, covering topics such as phishing, password management, and incident reporting. - Provide role-specific training for high-risk employees, such as helpdesk staff or executives. Use Simulated Exercises: - Conduct phishing simulations to measure user susceptibility and provide targeted follow-up training. - Run social engineering drills to evaluate employee responses and reinforce protocols. Leverage Gamification and Engagement: - Introduce interactive learning methods such as quizzes, gamified challenges, and rewards for successful detection and reporting of threats. Incorporate Security Policies into Onboarding: - Include cybersecurity training as part of the onboarding process for new employees. - Provide easy-to-understand materials outlining acceptable use policies and reporting procedures. Regular Refresher Courses: - Update training materials to include emerging threats and techniques used by adversaries. - Ensure all employees complete periodic refresher courses to stay informed. Emphasize Real-World Scenarios: - Use case studies of recent attacks to demonstrate the consequences of successful phishing or social engineering. - Discuss how specific employee actions can prevent or mitigate such attacks.

Software Configuration

Software configuration refers to making security-focused adjustments to the settings of applications, middleware, databases, or other software to mitigate potential threats. These changes help reduce the attack surface, enforce best practices, and protect sensitive data. This mitigation can be implemented through the following measures: Conduct a Security Review of Application Settings: - Review the software documentation to identify recommended security configurations. - Compare default settings against organizational policies and compliance requirements. Implement Access Controls and Permissions: - Restrict access to sensitive features or data within the software. - Enforce least privilege principles for all roles and accounts interacting with the software. Enable Logging and Monitoring: - Configure detailed logging for key application events such as authentication failures, configuration changes, or unusual activity. - Integrate logs with a centralized monitoring solution, such as a SIEM. Update and Patch Software Regularly: - Ensure the software is kept up-to-date with the latest security patches to address known vulnerabilities. - Use automated patch management tools to streamline the update process. Disable Unnecessary Features or Services: - Turn off unused functionality or components that could introduce vulnerabilities, such as debugging interfaces or deprecated APIs. Test Configuration Changes: - Perform configuration changes in a staging environment before applying them in production. - Conduct regular audits to ensure that settings remain aligned with security policies. *Tools for Implementation* Configuration Management Tools: - Ansible: Automates configuration changes across multiple applications and environments. - Chef: Ensures consistent application settings through code-based configuration management. - Puppet: Automates software configurations and audits changes for compliance. Security Benchmarking Tools: - CIS-CAT: Provides benchmarks and audits for secure software configurations. - Aqua Security Trivy: Scans containerized applications for configuration issues. Vulnerability Management Solutions: - Nessus: Identifies misconfigurations and suggests corrective actions. Logging and Monitoring Tools: - Splunk: Aggregates and analyzes application logs to detect suspicious activity.

Password Policies

Set and enforce secure password policies for accounts to reduce the likelihood of unauthorized access. Strong password policies include enforcing password complexity, requiring regular password changes, and preventing password reuse. This mitigation can be implemented through the following measures: Windows Systems: - Use Group Policy Management Console (GPMC) to configure: - Minimum password length (e.g., 12+ characters). - Password complexity requirements. - Password history (e.g., disallow last 24 passwords). - Account lockout duration and thresholds. Linux Systems: - Configure Pluggable Authentication Modules (PAM): - Use `pam_pwquality` to enforce complexity and length requirements. - Implement `pam_tally2` or `pam_faillock` for account lockouts. - Use `pwunconv` to disable password reuse. Password Managers: - Enforce usage of enterprise password managers (e.g., Bitwarden, 1Password, LastPass) to generate and store strong passwords. Password Blacklisting: - Use tools like Have I Been Pwned password checks or NIST-based blacklist solutions to prevent users from setting compromised passwords. Regular Auditing: - Periodically audit password policies and account configurations to ensure compliance using tools like LAPS (Local Admin Password Solution) and vulnerability scanners. *Tools for Implementation* Windows: - Group Policy Management Console (GPMC): Enforce password policies. - Microsoft Local Administrator Password Solution (LAPS): Enforce random, unique admin passwords. Linux/macOS: - PAM Modules (pam_pwquality, pam_tally2, pam_faillock): Enforce password rules. - Lynis: Audit password policies and system configurations. Cross-Platform: - Password Managers (Bitwarden, 1Password, KeePass): Manage and enforce strong passwords. - Have I Been Pwned API: Prevent the use of breached passwords. - NIST SP 800-63B compliant tools: Enforce password guidelines and blacklisting.

Detection

Consider monitoring API calls, file read events, and processes for suspicious activity that could indicate searching in process memory of password managers. Consider monitoring file reads surrounding known password manager applications.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.