Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Перехват сессии SSH

Secure Shell (SSH) is a standard means of remote access on Linux and macOS systems. It allows a user to connect to another system via an encrypted tunnel, commonly authenticating through a password, certificate or the use of an asymmetric encryption key pair. In order to move laterally from a compromised host, adversaries may take advantage of trust relationships established with other systems via public key authentication in active SSH sessions by hijacking an existing connection to another system. This may occur through compromising the SSH agent itself or by having access to the agent's socket. If an adversary is able to obtain root access, then hijacking SSH sessions is likely trivial. (Citation: Slideshare Abusing SSH) (Citation: SSHjack Blackhat) (Citation: Clockwork SSH Agent Hijacking) Compromising the SSH agent also provides access to intercept SSH credentials. (Citation: Welivesecurity Ebury SSH) SSH Hijacking differs from use of Remote Services because it injects into an existing SSH session rather than creating a new session using Valid Accounts.

ID: T1184
Тактика(-и): Lateral Movement
Платформы: Linux, macOS
Версия: 1.1
Дата создания: 16 Jan 2018
Последнее изменение: 25 Apr 2025

Контрмеры

Контрмера Описание
Privileged Account Management

Privileged Account Management focuses on implementing policies, controls, and tools to securely manage privileged accounts (e.g., SYSTEM, root, or administrative accounts). This includes restricting access, limiting the scope of permissions, monitoring privileged account usage, and ensuring accountability through logging and auditing.This mitigation can be implemented through the following measures: Account Permissions and Roles: - Implement RBAC and least privilege principles to allocate permissions securely. - Use tools like Active Directory Group Policies to enforce access restrictions. Credential Security: - Deploy password vaulting tools like CyberArk, HashiCorp Vault, or KeePass for secure storage and rotation of credentials. - Enforce password policies for complexity, uniqueness, and expiration using tools like Microsoft Group Policy Objects (GPO). Multi-Factor Authentication (MFA): - Enforce MFA for all privileged accounts using Duo Security, Okta, or Microsoft Azure AD MFA. Privileged Access Management (PAM): - Use PAM solutions like CyberArk, BeyondTrust, or Thycotic to manage, monitor, and audit privileged access. Auditing and Monitoring: - Integrate activity monitoring into your SIEM (e.g., Splunk or QRadar) to detect and alert on anomalous privileged account usage. Just-In-Time Access: - Deploy JIT solutions like Azure Privileged Identity Management (PIM) or configure ephemeral roles in AWS and GCP to grant time-limited elevated permissions. *Tools for Implementation* Privileged Access Management (PAM): - CyberArk, BeyondTrust, Thycotic, HashiCorp Vault. Credential Management: - Microsoft LAPS (Local Admin Password Solution), Password Safe, HashiCorp Vault, KeePass. Multi-Factor Authentication: - Duo Security, Okta, Microsoft Azure MFA, Google Authenticator. Linux Privilege Management: - sudo configuration, SELinux, AppArmor. Just-In-Time Access: - Azure Privileged Identity Management (PIM), AWS IAM Roles with session constraints, GCP Identity-Aware Proxy.

User Account Control

User Account Control (UAC) is a security feature in Microsoft Windows that prevents unauthorized changes to the operating system. UAC prompts users to confirm or provide administrator credentials when an action requires elevated privileges. Proper configuration of UAC reduces the risk of privilege escalation attacks. This mitigation can be implemented through the following measures: Enable UAC Globally: - Ensure UAC is enabled through Group Policy by setting `User Account Control: Run all administrators in Admin Approval Mode` to `Enabled`. Require Credential Prompt: - Use Group Policy to configure UAC to prompt for administrative credentials instead of just confirmation (`User Account Control: Behavior of the elevation prompt`). Restrict Built-in Administrator Account: Set `Admin Approval Mode` for the built-in Administrator account to `Enabled` in Group Policy. Secure the UAC Prompt: - Configure UAC prompts to display on the secure desktop (`User Account Control: Switch to the secure desktop when prompting for elevation`). Prevent UAC Bypass: - Block untrusted applications from triggering UAC prompts by configuring `User Account Control: Only elevate executables that are signed and validated`. - Use EDR tools to detect and block known UAC bypass techniques. Monitor UAC-Related Events: - Use Windows Event Viewer to monitor for event ID 4688 (process creation) and look for suspicious processes attempting to invoke UAC elevation. *Tools for Implementation* Built-in Windows Tools: - Group Policy Editor: Configure UAC settings centrally for enterprise environments. - Registry Editor: Modify UAC-related settings directly, such as `EnableLUA` and `ConsentPromptBehaviorAdmin`. Endpoint Security Solutions: - Microsoft Defender for Endpoint: Detects and blocks UAC bypass techniques. - Sysmon: Logs process creations and monitors UAC elevation attempts for suspicious activity. Third-Party Security Tools: - Process Monitor (Sysinternals): Tracks real-time processes interacting with UAC. - EventSentry: Monitors Windows Event Logs for UAC-related alerts.

Disable or Remove Feature or Program

Disable or remove unnecessary and potentially vulnerable software, features, or services to reduce the attack surface and prevent abuse by adversaries. This involves identifying software or features that are no longer needed or that could be exploited and ensuring they are either removed or properly disabled. This mitigation can be implemented through the following measures: Remove Legacy Software: - Use Case: Disable or remove older versions of software that no longer receive updates or security patches (e.g., legacy Java, Adobe Flash). - Implementation: A company removes Flash Player from all employee systems after it has reached its end-of-life date. Disable Unused Features: - Use Case: Turn off unnecessary operating system features like SMBv1, Telnet, or RDP if they are not required. - Implementation: Disable SMBv1 in a Windows environment to mitigate vulnerabilities like EternalBlue. Control Applications Installed by Users: - Use Case: Prevent users from installing unauthorized software via group policies or other management tools. - Implementation: Block user installations of unauthorized file-sharing applications (e.g., BitTorrent clients) in an enterprise environment. Remove Unnecessary Services: - Use Case: Identify and disable unnecessary default services running on endpoints, servers, or network devices. - Implementation: Disable unused administrative shares (e.g., C$, ADMIN$) on workstations. Restrict Add-ons and Plugins: - Use Case: Remove or disable browser plugins and add-ons that are not needed for business purposes. - Implementation: Disable Java and ActiveX plugins in web browsers to prevent drive-by attacks.

SSH Hijacking Mitigation

Ensure SSH key pairs have strong passwords and refrain from using key-store technologies such as ssh-agent unless they are properly protected. Ensure that all private keys are stored securely in locations where only the legitimate owner has access to with strong passwords and are rotated frequently. Ensure proper file permissions are set and harden system to prevent root privilege escalation opportunities. Do not allow remote access via SSH as root or other privileged accounts. Ensure that agent forwarding is disabled on systems that do not explicitly require this feature to prevent misuse. (Citation: Symantec SSH and ssh-agent)

Restrict File and Directory Permissions

Restricting file and directory permissions involves setting access controls at the file system level to limit which users, groups, or processes can read, write, or execute files. By configuring permissions appropriately, organizations can reduce the attack surface for adversaries seeking to access sensitive data, plant malicious code, or tamper with system files. Enforce Least Privilege Permissions: - Remove unnecessary write permissions on sensitive files and directories. - Use file ownership and groups to control access for specific roles. Example (Windows): Right-click the shared folder → Properties → Security tab → Adjust permissions for NTFS ACLs. Harden File Shares: - Disable anonymous access to shared folders. - Enforce NTFS permissions for shared folders on Windows. Example: Set permissions to restrict write access to critical files, such as system executables (e.g., `/bin` or `/sbin` on Linux). Use tools like `chown` and `chmod` to assign file ownership and limit access. On Linux, apply: `chmod 750 /etc/sensitive.conf` `chown root:admin /etc/sensitive.conf` File Integrity Monitoring (FIM): - Use tools like Tripwire, Wazuh, or OSSEC to monitor changes to critical file permissions. Audit File System Access: - Enable auditing to track permission changes or unauthorized access attempts. - Use auditd (Linux) or Event Viewer (Windows) to log activities. Restrict Startup Directories: - Configure permissions to prevent unauthorized writes to directories like `C:\ProgramData\Microsoft\Windows\Start Menu`. Example: Restrict write access to critical directories like `/etc/`, `/usr/local/`, and Windows directories such as `C:\Windows\System32`. - On Windows, use icacls to modify permissions: `icacls "C:\Windows\System32" /inheritance:r /grant:r SYSTEM:(OI)(CI)F` - On Linux, monitor permissions using tools like `lsattr` or `auditd`.

Password Policies

Set and enforce secure password policies for accounts to reduce the likelihood of unauthorized access. Strong password policies include enforcing password complexity, requiring regular password changes, and preventing password reuse. This mitigation can be implemented through the following measures: Windows Systems: - Use Group Policy Management Console (GPMC) to configure: - Minimum password length (e.g., 12+ characters). - Password complexity requirements. - Password history (e.g., disallow last 24 passwords). - Account lockout duration and thresholds. Linux Systems: - Configure Pluggable Authentication Modules (PAM): - Use `pam_pwquality` to enforce complexity and length requirements. - Implement `pam_tally2` or `pam_faillock` for account lockouts. - Use `pwunconv` to disable password reuse. Password Managers: - Enforce usage of enterprise password managers (e.g., Bitwarden, 1Password, LastPass) to generate and store strong passwords. Password Blacklisting: - Use tools like Have I Been Pwned password checks or NIST-based blacklist solutions to prevent users from setting compromised passwords. Regular Auditing: - Periodically audit password policies and account configurations to ensure compliance using tools like LAPS (Local Admin Password Solution) and vulnerability scanners. *Tools for Implementation* Windows: - Group Policy Management Console (GPMC): Enforce password policies. - Microsoft Local Administrator Password Solution (LAPS): Enforce random, unique admin passwords. Linux/macOS: - PAM Modules (pam_pwquality, pam_tally2, pam_faillock): Enforce password rules. - Lynis: Audit password policies and system configurations. Cross-Platform: - Password Managers (Bitwarden, 1Password, KeePass): Manage and enforce strong passwords. - Have I Been Pwned API: Prevent the use of breached passwords. - NIST SP 800-63B compliant tools: Enforce password guidelines and blacklisting.

Обнаружение

Use of SSH may be legitimate, depending upon the network environment and how it is used. Other factors, such as access patterns and activity that occurs after a remote login, may indicate suspicious or malicious behavior with SSH. Monitor for user accounts logged into systems they would not normally access or access patterns to multiple systems over a relatively short period of time. Also monitor user SSH-agent socket files being used by different users.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.