Загрузка раньше ОС
Sub-techniques (5)
Adversaries may abuse Pre-OS Boot mechanisms as a way to establish persistence on a system. During the booting process of a computer, firmware and various startup services are loaded before the operating system. These programs control flow of execution before the operating system takes control.(Citation: Wikipedia Booting) Adversaries may overwrite data in boot drivers or firmware such as BIOS (Basic Input/Output System) and The Unified Extensible Firmware Interface (UEFI) to persist on systems at a layer below the operating system. This can be particularly difficult to detect as malware at this level will not be detected by host software-based defenses.
Контрмеры |
|
Контрмера | Описание |
---|---|
Limit Access to Resource Over Network |
Restrict access to network resources, such as file shares, remote systems, and services, to only those users, accounts, or systems with a legitimate business requirement. This can include employing technologies like network concentrators, RDP gateways, and zero-trust network access (ZTNA) models, alongside hardening services and protocols. This mitigation can be implemented through the following measures: Audit and Restrict Access: - Regularly audit permissions for file shares, network services, and remote access tools. - Remove unnecessary access and enforce least privilege principles for users and services. - Use Active Directory and IAM tools to restrict access based on roles and attributes. Deploy Secure Remote Access Solutions: - Use RDP gateways, VPN concentrators, and ZTNA solutions to aggregate and secure remote access connections. - Configure access controls to restrict connections based on time, device, and user identity. - Enforce MFA for all remote access mechanisms. Disable Unnecessary Services: - Identify running services using tools like netstat (Windows/Linux) or Nmap. - Disable unused services, such as Telnet, FTP, and legacy SMB, to reduce the attack surface. - Use firewall rules to block traffic on unused ports and protocols. Network Segmentation and Isolation: - Use VLANs, firewalls, or micro-segmentation to isolate critical network resources from general access. - Restrict communication between subnets to prevent lateral movement. Monitor and Log Access: - Monitor access attempts to file shares, RDP, and remote network resources using SIEM tools. - Enable auditing and logging for successful and failed attempts to access restricted resources. *Tools for Implementation* File Share Management: - Microsoft Active Directory Group Policies - Samba (Linux/Unix file share management) - AccessEnum (Windows access auditing tool) Secure Remote Access: - Microsoft Remote Desktop Gateway - Apache Guacamole (open-source RDP/VNC gateway) - Zero Trust solutions: Tailscale, Cloudflare Zero Trust Service and Protocol Hardening: - Nmap or Nessus for network service discovery - Windows Group Policy Editor for disabling SMBv1, Telnet, and legacy protocols - iptables or firewalld (Linux) for blocking unnecessary traffic Network Segmentation: - pfSense for open-source network isolation |
Audit |
Auditing is the process of recording activity and systematically reviewing and analyzing the activity and system configurations. The primary purpose of auditing is to detect anomalies and identify potential threats or weaknesses in the environment. Proper auditing configurations can also help to meet compliance requirements. The process of auditing encompasses regular analysis of user behaviors and system logs in support of proactive security measures. Auditing is applicable to all systems used within an organization, from the front door of a building to accessing a file on a fileserver. It is considered more critical for regulated industries such as, healthcare, finance and government where compliance requirements demand stringent tracking of user and system activates.This mitigation can be implemented through the following measures: System Audit: - Use Case: Regularly assess system configurations to ensure compliance with organizational security policies. - Implementation: Use tools to scan for deviations from established benchmarks. Permission Audits: - Use Case: Review file and folder permissions to minimize the risk of unauthorized access or privilege escalation. - Implementation: Run access reviews to identify users or groups with excessive permissions. Software Audits: - Use Case: Identify outdated, unsupported, or insecure software that could serve as an attack vector. - Implementation: Use inventory and vulnerability scanning tools to detect outdated versions and recommend secure alternatives. Configuration Audits: - Use Case: Evaluate system and network configurations to ensure secure settings (e.g., disabled SMBv1, enabled MFA). - Implementation: Implement automated configuration scanning tools like SCAP (Security Content Automation Protocol) to identify non-compliant systems. Network Audits: - Use Case: Examine network traffic, firewall rules, and endpoint communications to identify unauthorized or insecure connections. - Implementation: Utilize tools such as Wireshark, or Zeek to monitor and log suspicious network behavior. |
Update Software |
Software updates ensure systems are protected against known vulnerabilities by applying patches and upgrades provided by vendors. Regular updates reduce the attack surface and prevent adversaries from exploiting known security gaps. This includes patching operating systems, applications, drivers, and firmware. This mitigation can be implemented through the following measures: Regular Operating System Updates - Implementation: Apply the latest Windows security updates monthly using WSUS (Windows Server Update Services) or a similar patch management solution. Configure systems to check for updates automatically and schedule reboots during maintenance windows. - Use Case: Prevents exploitation of OS vulnerabilities such as privilege escalation or remote code execution. Application Patching - Implementation: Monitor Apache's update release notes for security patches addressing vulnerabilities. Schedule updates for off-peak hours to avoid downtime while maintaining security compliance. - Use Case: Prevents exploitation of web application vulnerabilities, such as those leading to unauthorized access or data breaches. Firmware Updates - Implementation: Regularly check the vendor’s website for firmware updates addressing vulnerabilities. Plan for update deployment during scheduled maintenance to minimize business disruption. - Use Case: Protects against vulnerabilities that adversaries could exploit to gain access to network devices or inject malicious traffic. Emergency Patch Deployment - Implementation: Use the emergency patch deployment feature of the organization's patch management tool to apply updates to all affected Exchange servers within 24 hours. - Use Case: Reduces the risk of exploitation by rapidly addressing critical vulnerabilities. Centralized Patch Management - Implementation: Implement a centralized patch management system, such as SCCM or ManageEngine, to automate and track patch deployment across all environments. Generate regular compliance reports to ensure all systems are updated. - Use Case: Streamlines patching processes and ensures no critical systems are missed. *Tools for Implementation* Patch Management Tools: - WSUS: Manage and deploy Microsoft updates across the organization. - ManageEngine Patch Manager Plus: Automate patch deployment for OS and third-party apps. - Ansible: Automate updates across multiple platforms, including Linux and Windows. Vulnerability Scanning Tools: - OpenVAS: Open-source vulnerability scanning to identify missing patches. |
Privileged Account Management |
Privileged Account Management focuses on implementing policies, controls, and tools to securely manage privileged accounts (e.g., SYSTEM, root, or administrative accounts). This includes restricting access, limiting the scope of permissions, monitoring privileged account usage, and ensuring accountability through logging and auditing.This mitigation can be implemented through the following measures: Account Permissions and Roles: - Implement RBAC and least privilege principles to allocate permissions securely. - Use tools like Active Directory Group Policies to enforce access restrictions. Credential Security: - Deploy password vaulting tools like CyberArk, HashiCorp Vault, or KeePass for secure storage and rotation of credentials. - Enforce password policies for complexity, uniqueness, and expiration using tools like Microsoft Group Policy Objects (GPO). Multi-Factor Authentication (MFA): - Enforce MFA for all privileged accounts using Duo Security, Okta, or Microsoft Azure AD MFA. Privileged Access Management (PAM): - Use PAM solutions like CyberArk, BeyondTrust, or Thycotic to manage, monitor, and audit privileged access. Auditing and Monitoring: - Integrate activity monitoring into your SIEM (e.g., Splunk or QRadar) to detect and alert on anomalous privileged account usage. Just-In-Time Access: - Deploy JIT solutions like Azure Privileged Identity Management (PIM) or configure ephemeral roles in AWS and GCP to grant time-limited elevated permissions. *Tools for Implementation* Privileged Access Management (PAM): - CyberArk, BeyondTrust, Thycotic, HashiCorp Vault. Credential Management: - Microsoft LAPS (Local Admin Password Solution), Password Safe, HashiCorp Vault, KeePass. Multi-Factor Authentication: - Duo Security, Okta, Microsoft Azure MFA, Google Authenticator. Linux Privilege Management: - sudo configuration, SELinux, AppArmor. Just-In-Time Access: - Azure Privileged Identity Management (PIM), AWS IAM Roles with session constraints, GCP Identity-Aware Proxy. |
Boot Integrity |
Boot Integrity ensures that a system starts securely by verifying the integrity of its boot process, operating system, and associated components. This mitigation focuses on leveraging secure boot mechanisms, hardware-rooted trust, and runtime integrity checks to prevent tampering during the boot sequence. It is designed to thwart adversaries attempting to modify system firmware, bootloaders, or critical OS components. This mitigation can be implemented through the following measures: Implementation of Secure Boot: - Implementation: Enable UEFI Secure Boot on all systems and configure it to allow only signed bootloaders and operating systems. - Use Case: An adversary attempts to replace the system’s bootloader with a malicious version to gain persistence. Secure Boot prevents the untrusted bootloader from executing, halting the attack. Utilization of TPMs: - Implementation: Configure systems to use TPM-based attestation for boot integrity, ensuring that any modification to the firmware, bootloader, or OS is detected. - Use Case: A compromised firmware component alters the boot sequence. The TPM detects the change and triggers an alert, allowing the organization to respond before further damage. Enable Bootloader Passwords: - Implementation: Protect BIOS/UEFI settings with a strong password and limit physical access to devices. - Use Case: An attacker with physical access attempts to disable Secure Boot or modify the boot sequence. The password prevents unauthorized changes. Runtime Integrity Monitoring: - Implementation: Deploy solutions to verify the integrity of critical files and processes after boot. - Use Case: A malware infection modifies kernel modules post-boot. Runtime integrity monitoring detects the modification and prevents the malicious module from loading. |
Обнаружение
Perform integrity checking on pre-OS boot mechanisms that can be manipulated for malicious purposes. Take snapshots of boot records and firmware and compare against known good images. Log changes to boot records, BIOS, and EFI, which can be performed by API calls, and compare against known good behavior and patching. Disk check, forensic utilities, and data from device drivers (i.e. processes and API calls) may reveal anomalies that warrant deeper investigation.(Citation: ITWorld Hard Disk Health Dec 2014)
Ссылки
- Wikipedia. (n.d.). Booting. Retrieved November 13, 2019.
- Pinola, M. (2014, December 14). 3 tools to check your hard drive's health and make sure it's not already dying on you. Retrieved November 17, 2024.
- Microsoft Incident Response. (2023, April 11). Guidance for investigating attacks using CVE-2022-21894: The BlackLotus campaign. Retrieved February 12, 2025.
- Microsoft. (n.d.). Secure the Windows 10 boot process. Retrieved April 23, 2020.
- Trusted Computing Group. (2008, April 29). Trusted Platform Module (TPM) Summary. Retrieved June 8, 2016.
Связанные риски
Каталоги
Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.