Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Кража или подделка сертификатов аутентификации

Adversaries may steal or forge certificates used for authentication to access remote systems or resources. Digital certificates are often used to sign and encrypt messages and/or files. Certificates are also used as authentication material. For example, Entra ID device certificates and Active Directory Certificate Services (AD CS) certificates bind to an identity and can be used as credentials for domain accounts.(Citation: O365 Blog Azure AD Device IDs)(Citation: Microsoft AD CS Overview) Authentication certificates can be both stolen and forged. For example, AD CS certificates can be stolen from encrypted storage (in the Registry or files)(Citation: APT29 Deep Look at Credential Roaming), misplaced certificate files (i.e. Unsecured Credentials), or directly from the Windows certificate store via various crypto APIs.(Citation: SpecterOps Certified Pre Owned)(Citation: GitHub CertStealer)(Citation: GitHub GhostPack Certificates) With appropriate enrollment rights, users and/or machines within a domain can also request and/or manually renew certificates from enterprise certificate authorities (CA). This enrollment process defines various settings and permissions associated with the certificate. Of note, the certificate’s extended key usage (EKU) values define signing, encryption, and authentication use cases, while the certificate’s subject alternative name (SAN) values define the certificate owner’s alternate names.(Citation: Medium Certified Pre Owned) Abusing certificates for authentication credentials may enable other behaviors such as Lateral Movement. Certificate-related misconfigurations may also enable opportunities for Privilege Escalation, by way of allowing users to impersonate or assume privileged accounts or permissions via the identities (SANs) associated with a certificate. These abuses may also enable Persistence via stealing or forging certificates that can be used as Valid Accounts for the duration of the certificate's validity, despite user password resets. Authentication certificates can also be stolen and forged for machine accounts. Adversaries who have access to root (or subordinate) CA certificate private keys (or mechanisms protecting/managing these keys) may also establish Persistence by forging arbitrary authentication certificates for the victim domain (known as “golden” certificates).(Citation: Medium Certified Pre Owned) Adversaries may also target certificates and related services in order to access other forms of credentials, such as Golden Ticket ticket-granting tickets (TGT) or NTLM plaintext.(Citation: Medium Certified Pre Owned)

ID: T1649
Тактика(-и): Credential Access
Платформы: Identity Provider, Linux, macOS, Windows
Источники данных: Active Directory: Active Directory Credential Request, Active Directory: Active Directory Object Modification, Application Log: Application Log Content, Command: Command Execution, File: File Access, Logon Session: Logon Session Creation, Windows Registry: Windows Registry Key Access
Версия: 1.2
Дата создания: 03 Aug 2022
Последнее изменение: 15 Apr 2025

Примеры процедур

Название Описание
AADInternals

AADInternals can create and export various authentication certificates, including those associated with Azure AD joined/registered devices.(Citation: AADInternals Documentation)

APT29

APT29 has abused misconfigured AD CS certificate templates to impersonate admin users and create additional authentication certificates.(Citation: Mandiant APT29 Trello)

Mimikatz

Mimikatz's `CRYPTO` module can create and export various types of authentication certificates.(Citation: Adsecurity Mimikatz Guide)

Контрмеры

Контрмера Описание
Active Directory Configuration

Implement robust Active Directory (AD) configurations using group policies to secure user accounts, control access, and minimize the attack surface. AD configurations enable centralized control over account settings, logon policies, and permissions, reducing the risk of unauthorized access and lateral movement within the network. This mitigation can be implemented through the following measures: Account Configuration: - Implementation: Use domain accounts instead of local accounts to leverage AD’s centralized management, including group policies, auditing, and access control. - Use Case: For IT staff managing shared resources, provision domain accounts that allow IT teams to log in centrally, reducing the risk of unmanaged, rogue local accounts on individual machines. Interactive Logon Restrictions: - Implementation: Configure group policies to restrict interactive logons (e.g., direct physical or RDP logons) for service accounts or privileged accounts that do not require such access. - Use Case: Prevent service accounts, such as SQL Server accounts, from having interactive logon privileges. This reduces the risk of these accounts being leveraged for lateral movement if compromised. Remote Desktop Settings: - Implementation: Limit Remote Desktop Protocol (RDP) access to specific, authorized accounts. Use group policies to enforce this, allowing only necessary users to establish RDP sessions. - Use Case: On sensitive servers (e.g., domain controllers or financial databases), restrict RDP access to administrative accounts only, while all other users are denied access. Dedicated Administrative Accounts: - Implementation: Create domain-wide administrative accounts that are restricted from interactive logons, designed solely for high-level tasks (e.g., software installation, patching). - Use Case: Create separate administrative accounts for different purposes, such as one set of accounts for installations and another for managing repository access. This limits exposure and helps reduce attack vectors. Authentication Silos: - Implementation: Configure Authentication Silos in AD, using group policies to create access zones with restrictions based on membership, such as the Protected Users security group. This restricts access to critical accounts and minimizes exposure to potential threats. - Use Case: Place high-risk or high-value accounts, such as executive or administrative accounts, in an Authentication Silo with extra controls, limiting their exposure to only necessary systems. This reduces the risk of credential misuse or abuse if these accounts are compromised. **Tools for Implementation**: - Active Directory Group Policies: Use Group Policy Management Console (GPMC) to configure, deploy, and enforce policies across AD environments. - PowerShell: Automate account configuration, logon restrictions, and policy application using PowerShell scripts. - AD Administrative Center: Manage Authentication Silos and configure high-level policies for critical user groups within AD.

Disable or Remove Feature or Program

Disable or remove unnecessary and potentially vulnerable software, features, or services to reduce the attack surface and prevent abuse by adversaries. This involves identifying software or features that are no longer needed or that could be exploited and ensuring they are either removed or properly disabled. This mitigation can be implemented through the following measures: Remove Legacy Software: - Use Case: Disable or remove older versions of software that no longer receive updates or security patches (e.g., legacy Java, Adobe Flash). - Implementation: A company removes Flash Player from all employee systems after it has reached its end-of-life date. Disable Unused Features: - Use Case: Turn off unnecessary operating system features like SMBv1, Telnet, or RDP if they are not required. - Implementation: Disable SMBv1 in a Windows environment to mitigate vulnerabilities like EternalBlue. Control Applications Installed by Users: - Use Case: Prevent users from installing unauthorized software via group policies or other management tools. - Implementation: Block user installations of unauthorized file-sharing applications (e.g., BitTorrent clients) in an enterprise environment. Remove Unnecessary Services: - Use Case: Identify and disable unnecessary default services running on endpoints, servers, or network devices. - Implementation: Disable unused administrative shares (e.g., C$, ADMIN$) on workstations. Restrict Add-ons and Plugins: - Use Case: Remove or disable browser plugins and add-ons that are not needed for business purposes. - Implementation: Disable Java and ActiveX plugins in web browsers to prevent drive-by attacks.

Encrypt Sensitive Information

Protect sensitive information at rest, in transit, and during processing by using strong encryption algorithms. Encryption ensures the confidentiality and integrity of data, preventing unauthorized access or tampering. This mitigation can be implemented through the following measures: Encrypt Data at Rest: - Use Case: Use full-disk encryption or file-level encryption to secure sensitive data stored on devices. - Implementation: Implement BitLocker for Windows systems or FileVault for macOS devices to encrypt hard drives. Encrypt Data in Transit: - Use Case: Use secure communication protocols (e.g., TLS, HTTPS) to encrypt sensitive data as it travels over networks. - Implementation: Enable HTTPS for all web applications and configure mail servers to enforce STARTTLS for email encryption. Encrypt Backups: - Use Case: Ensure that backup data is encrypted both during storage and transfer to prevent unauthorized access. - Implementation: Encrypt cloud backups using AES-256 before uploading them to Amazon S3 or Google Cloud. Encrypt Application Secrets: - Use Case: Store sensitive credentials, API keys, and configuration files in encrypted vaults. - Implementation: Use HashiCorp Vault or AWS Secrets Manager to manage and encrypt secrets. Database Encryption: - Use Case: Enable Transparent Data Encryption (TDE) or column-level encryption in database management systems. - Implementation: Use MySQL’s built-in encryption features to encrypt sensitive database fields such as social security numbers.

Audit

Auditing is the process of recording activity and systematically reviewing and analyzing the activity and system configurations. The primary purpose of auditing is to detect anomalies and identify potential threats or weaknesses in the environment. Proper auditing configurations can also help to meet compliance requirements. The process of auditing encompasses regular analysis of user behaviors and system logs in support of proactive security measures. Auditing is applicable to all systems used within an organization, from the front door of a building to accessing a file on a fileserver. It is considered more critical for regulated industries such as, healthcare, finance and government where compliance requirements demand stringent tracking of user and system activates.This mitigation can be implemented through the following measures: System Audit: - Use Case: Regularly assess system configurations to ensure compliance with organizational security policies. - Implementation: Use tools to scan for deviations from established benchmarks. Permission Audits: - Use Case: Review file and folder permissions to minimize the risk of unauthorized access or privilege escalation. - Implementation: Run access reviews to identify users or groups with excessive permissions. Software Audits: - Use Case: Identify outdated, unsupported, or insecure software that could serve as an attack vector. - Implementation: Use inventory and vulnerability scanning tools to detect outdated versions and recommend secure alternatives. Configuration Audits: - Use Case: Evaluate system and network configurations to ensure secure settings (e.g., disabled SMBv1, enabled MFA). - Implementation: Implement automated configuration scanning tools like SCAP (Security Content Automation Protocol) to identify non-compliant systems. Network Audits: - Use Case: Examine network traffic, firewall rules, and endpoint communications to identify unauthorized or insecure connections. - Implementation: Utilize tools such as Wireshark, or Zeek to monitor and log suspicious network behavior.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.