Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Indicator Removal:  Clear Mailbox Data

Adversaries may modify mail and mail application data to remove evidence of their activity. Email applications allow users and other programs to export and delete mailbox data via command line tools or use of APIs. Mail application data can be emails, email metadata, or logs generated by the application or operating system, such as export requests. Adversaries may manipulate emails and mailbox data to remove logs, artifacts, and metadata, such as evidence of Phishing/Internal Spearphishing, Email Collection, Mail Protocols for command and control, or email-based exfiltration such as Exfiltration Over Alternative Protocol. For example, to remove evidence on Exchange servers adversaries have used the ExchangePowerShell PowerShell module, including Remove-MailboxExportRequest to remove evidence of mailbox exports.(Citation: Volexity SolarWinds)(Citation: ExchangePowerShell Module) On Linux and macOS, adversaries may also delete emails through a command line utility called mail or use AppleScript to interact with APIs on macOS.(Citation: Cybereason Cobalt Kitty 2017)(Citation: mailx man page) Adversaries may also remove emails and metadata/headers indicative of spam or suspicious activity (for example, through the use of organization-wide transport rules) to reduce the likelihood of malicious emails being detected by security products.(Citation: Microsoft OAuth Spam 2022)

ID: T1070.008
Sub-technique of:  T1070
Tactic(s): Defense Evasion
Platforms: Linux, macOS, Office Suite, Windows
Data Sources: Application Log: Application Log Content, Command: Command Execution, File: File Deletion, File: File Modification, Process: Process Creation
Version: 1.2
Created: 08 Jul 2022
Last Modified: 15 Apr 2025

Procedure Examples

Name Description
LunarMail

LunarMail can set the `PR_DELETE_AFTER_SUBMIT` flag to delete messages sent for data exfiltration.(Citation: ESET Turla Lunar toolset May 2024)

APT42

APT42 has deleted login notification emails and has cleared the Sent folder to cover their tracks.(Citation: Mandiant APT42-charms)

APT29

APT29 removed evidence of email export requests using Remove-MailboxExportRequest.(Citation: Volexity SolarWinds)

Goopy

Goopy has the ability to delete emails used for C2 once the content has been copied.(Citation: Cybereason Cobalt Kitty 2017)

During the SolarWinds Compromise, APT29 removed evidence of email export requests using `Remove-MailboxExportRequest`.(Citation: Volexity SolarWinds)

Mitigations

Mitigation Description
Restrict File and Directory Permissions

Restricting file and directory permissions involves setting access controls at the file system level to limit which users, groups, or processes can read, write, or execute files. By configuring permissions appropriately, organizations can reduce the attack surface for adversaries seeking to access sensitive data, plant malicious code, or tamper with system files. Enforce Least Privilege Permissions: - Remove unnecessary write permissions on sensitive files and directories. - Use file ownership and groups to control access for specific roles. Example (Windows): Right-click the shared folder → Properties → Security tab → Adjust permissions for NTFS ACLs. Harden File Shares: - Disable anonymous access to shared folders. - Enforce NTFS permissions for shared folders on Windows. Example: Set permissions to restrict write access to critical files, such as system executables (e.g., `/bin` or `/sbin` on Linux). Use tools like `chown` and `chmod` to assign file ownership and limit access. On Linux, apply: `chmod 750 /etc/sensitive.conf` `chown root:admin /etc/sensitive.conf` File Integrity Monitoring (FIM): - Use tools like Tripwire, Wazuh, or OSSEC to monitor changes to critical file permissions. Audit File System Access: - Enable auditing to track permission changes or unauthorized access attempts. - Use auditd (Linux) or Event Viewer (Windows) to log activities. Restrict Startup Directories: - Configure permissions to prevent unauthorized writes to directories like `C:\ProgramData\Microsoft\Windows\Start Menu`. Example: Restrict write access to critical directories like `/etc/`, `/usr/local/`, and Windows directories such as `C:\Windows\System32`. - On Windows, use icacls to modify permissions: `icacls "C:\Windows\System32" /inheritance:r /grant:r SYSTEM:(OI)(CI)F` - On Linux, monitor permissions using tools like `lsattr` or `auditd`.

Audit

Auditing is the process of recording activity and systematically reviewing and analyzing the activity and system configurations. The primary purpose of auditing is to detect anomalies and identify potential threats or weaknesses in the environment. Proper auditing configurations can also help to meet compliance requirements. The process of auditing encompasses regular analysis of user behaviors and system logs in support of proactive security measures. Auditing is applicable to all systems used within an organization, from the front door of a building to accessing a file on a fileserver. It is considered more critical for regulated industries such as, healthcare, finance and government where compliance requirements demand stringent tracking of user and system activates.This mitigation can be implemented through the following measures: System Audit: - Use Case: Regularly assess system configurations to ensure compliance with organizational security policies. - Implementation: Use tools to scan for deviations from established benchmarks. Permission Audits: - Use Case: Review file and folder permissions to minimize the risk of unauthorized access or privilege escalation. - Implementation: Run access reviews to identify users or groups with excessive permissions. Software Audits: - Use Case: Identify outdated, unsupported, or insecure software that could serve as an attack vector. - Implementation: Use inventory and vulnerability scanning tools to detect outdated versions and recommend secure alternatives. Configuration Audits: - Use Case: Evaluate system and network configurations to ensure secure settings (e.g., disabled SMBv1, enabled MFA). - Implementation: Implement automated configuration scanning tools like SCAP (Security Content Automation Protocol) to identify non-compliant systems. Network Audits: - Use Case: Examine network traffic, firewall rules, and endpoint communications to identify unauthorized or insecure connections. - Implementation: Utilize tools such as Wireshark, or Zeek to monitor and log suspicious network behavior.

Remote Data Storage

Remote Data Storage focuses on moving critical data, such as security logs and sensitive files, to secure, off-host locations to minimize unauthorized access, tampering, or destruction by adversaries. By leveraging remote storage solutions, organizations enhance the protection of forensic evidence, sensitive information, and monitoring data. This mitigation can be implemented through the following measures: Centralized Log Management: - Configure endpoints to forward security logs to a centralized log collector or SIEM. - Use tools like Splunk Graylog, or Security Onion to aggregate and store logs. - Example command (Linux): `sudo auditd | tee /var/log/audit/audit.log | nc 514` Remote File Storage Solutions: - Utilize cloud storage solutions like AWS S3, Google Cloud Storage, or Azure Blob Storage for sensitive data. - Ensure proper encryption at rest and access control policies (IAM roles, ACLs). Intrusion Detection Log Forwarding: - Forward logs from IDS/IPS systems (e.g., Zeek/Suricata) to a remote security information system. - Example for Suricata log forwarding: `outputs: - type: syslog protocol: tls address: ` Immutable Backup Configurations: - Enable immutable storage settings for backups to prevent adversaries from modifying or deleting data. - Example: AWS S3 Object Lock. Data Encryption: - Ensure encryption for sensitive data using AES-256 at rest and TLS 1.2+ for data in transit. Tools: OpenSSL, BitLocker, LUKS for Linux.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.