Account Manipulation: Additional Container Cluster Roles
Other sub-techniques of Account Manipulation (7)
An adversary may add additional roles or permissions to an adversary-controlled user or service account to maintain persistent access to a container orchestration system. For example, an adversary with sufficient permissions may create a RoleBinding or a ClusterRoleBinding to bind a Role or ClusterRole to a Kubernetes account.(Citation: Kubernetes RBAC)(Citation: Aquasec Kubernetes Attack 2023) Where attribute-based access control (ABAC) is in use, an adversary with sufficient permissions may modify a Kubernetes ABAC policy to give the target account additional permissions.(Citation: Kuberentes ABAC) This account modification may immediately follow Create Account or other malicious account activity. Adversaries may also modify existing Valid Accounts that they have compromised. Note that where container orchestration systems are deployed in cloud environments, as with Google Kubernetes Engine, Amazon Elastic Kubernetes Service, and Azure Kubernetes Service, cloud-based role-based access control (RBAC) assignments or ABAC policies can often be used in place of or in addition to local permission assignments.(Citation: Google Cloud Kubernetes IAM)(Citation: AWS EKS IAM Roles for Service Accounts)(Citation: Microsoft Azure Kubernetes Service Service Accounts) In these cases, this technique may be used in conjunction with Additional Cloud Roles.
Mitigations |
|
Mitigation | Description |
---|---|
Multi-factor Authentication |
Multi-Factor Authentication (MFA) enhances security by requiring users to provide at least two forms of verification to prove their identity before granting access. These factors typically include: - *Something you know*: Passwords, PINs. - *Something you have*: Physical tokens, smartphone authenticator apps. - *Something you are*: Biometric data such as fingerprints, facial recognition, or retinal scans. Implementing MFA across all critical systems and services ensures robust protection against account takeover and unauthorized access. This mitigation can be implemented through the following measures: Identity and Access Management (IAM): - Use IAM solutions like Azure Active Directory, Okta, or AWS IAM to enforce MFA policies for all user logins, especially for privileged roles. - Enable conditional access policies to enforce MFA for risky sign-ins (e.g., unfamiliar devices, geolocations). Authentication Tools and Methods: - Use authenticator applications such as Google Authenticator, Microsoft Authenticator, or Authy for time-based one-time passwords (TOTP). - Deploy hardware-based tokens like YubiKey, RSA SecurID, or smart cards for additional security. - Enforce biometric authentication for compatible devices and applications. Secure Legacy Systems: - Integrate MFA solutions with older systems using third-party tools like Duo Security or Thales SafeNet. - Enable RADIUS/NPS servers to facilitate MFA for VPNs, RDP, and other network logins. Monitoring and Alerting: - Use SIEM tools to monitor failed MFA attempts, login anomalies, or brute-force attempts against MFA systems. - Implement alerts for suspicious MFA activities, such as repeated failed codes or new device registrations. Training and Policy Enforcement: - Educate employees on the importance of MFA and secure authenticator usage. - Enforce policies that require MFA on all critical systems, especially for remote access, privileged accounts, and cloud applications. |
User Account Management |
User Account Management involves implementing and enforcing policies for the lifecycle of user accounts, including creation, modification, and deactivation. Proper account management reduces the attack surface by limiting unauthorized access, managing account privileges, and ensuring accounts are used according to organizational policies. This mitigation can be implemented through the following measures: Enforcing the Principle of Least Privilege - Implementation: Assign users only the minimum permissions required to perform their job functions. Regularly audit accounts to ensure no excess permissions are granted. - Use Case: Reduces the risk of privilege escalation by ensuring accounts cannot perform unauthorized actions. Implementing Strong Password Policies - Implementation: Enforce password complexity requirements (e.g., length, character types). Require password expiration every 90 days and disallow password reuse. - Use Case: Prevents adversaries from gaining unauthorized access through password guessing or brute force attacks. Managing Dormant and Orphaned Accounts - Implementation: Implement automated workflows to disable accounts after a set period of inactivity (e.g., 30 days). Remove orphaned accounts (e.g., accounts without an assigned owner) during regular account audits. - Use Case: Eliminates dormant accounts that could be exploited by attackers. Account Lockout Policies - Implementation: Configure account lockout thresholds (e.g., lock accounts after five failed login attempts). Set lockout durations to a minimum of 15 minutes. - Use Case: Mitigates automated attack techniques that rely on repeated login attempts. Multi-Factor Authentication (MFA) for High-Risk Accounts - Implementation: Require MFA for all administrative accounts and high-risk users. Use MFA mechanisms like hardware tokens, authenticator apps, or biometrics. - Use Case: Prevents unauthorized access, even if credentials are stolen. Restricting Interactive Logins - Implementation: Restrict interactive logins for privileged accounts to specific secure systems or management consoles. Use group policies to enforce logon restrictions. - Use Case: Protects sensitive accounts from misuse or exploitation. *Tools for Implementation* Built-in Tools: - Microsoft Active Directory (AD): Centralized account management and RBAC enforcement. - Group Policy Object (GPO): Enforce password policies, logon restrictions, and account lockout policies. Identity and Access Management (IAM) Tools: - Okta: Centralized user provisioning, MFA, and SSO integration. - Microsoft Azure Active Directory: Provides advanced account lifecycle management, role-based access, and conditional access policies. Privileged Account Management (PAM): - CyberArk, BeyondTrust, Thycotic: Manage and monitor privileged account usage, enforce session recording, and JIT access. |
References
- Microsoft Azure. (2023, April 28). Access and identity options for Azure Kubernetes Service (AKS). Retrieved July 14, 2023.
- Michael Katchinskiy, Assaf Morag. (2023, April 21). First-Ever Attack Leveraging Kubernetes RBAC to Backdoor Clusters. Retrieved July 14, 2023.
- Kubernetes. (n.d.). Role Based Access Control Good Practices. Retrieved March 8, 2023.
- Kuberenets. (n.d.). Using ABAC Authorization. Retrieved July 14, 2023.
- Google Cloud. (n.d.). Create IAM policies. Retrieved July 14, 2023.
- Amazon Web Services. (n.d.). IAM roles for service accounts. Retrieved July 14, 2023.
Связанные риски
Каталоги
Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.