Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Ослабление защиты

Adversaries may maliciously modify components of a victim environment in order to hinder or disable defensive mechanisms. This not only involves impairing preventative defenses, such as firewalls and anti-virus, but also detection capabilities that defenders can use to audit activity and identify malicious behavior. This may also span both native defenses as well as supplemental capabilities installed by users and administrators. Adversaries may also impair routine operations that contribute to defensive hygiene, such as blocking users from logging out, preventing a system from shutting down, or disabling or modifying the update process. Adversaries could also target event aggregation and analysis mechanisms, or otherwise disrupt these procedures by altering other system components. These restrictions can further enable malicious operations as well as the continued propagation of incidents.(Citation: Google Cloud Mandiant UNC3886 2024)(Citation: Emotet shutdown)

ID: T1562
Суб-техники:  .001 .002 .003 .004 .006 .007 .008 .009 .010 .011 .012
Тактика(-и): Defense Evasion
Платформы: Containers, ESXi, IaaS, Identity Provider, Linux, macOS, Network Devices, Office Suite, Windows
Источники данных: Cloud Service: Cloud Service Disable, Cloud Service: Cloud Service Modification, Command: Command Execution, Driver: Driver Load, File: File Deletion, File: File Modification, Firewall: Firewall Disable, Firewall: Firewall Rule Modification, Process: OS API Execution, Process: Process Creation, Process: Process Metadata, Process: Process Modification, Process: Process Termination, Script: Script Execution, Sensor Health: Host Status, Service: Service Metadata, User Account: User Account Modification, Windows Registry: Windows Registry Key Deletion, Windows Registry: Windows Registry Key Modification
Версия: 1.7
Дата создания: 21 Feb 2020
Последнее изменение: 15 Apr 2025

Примеры процедур

Название Описание
BOLDMOVE

BOLDMOVE can modify proprietary Fortinet logs on victim machines.(Citation: Google Cloud BOLDMOVE 2023)

BlackByte

BlackByte removed Kernel Notify Routines to bypass endpoint detection and response (EDR) products.(Citation: Symantec BlackByte 2022)

JumbledPath

JumbledPath can impair logging on all devices used along its connection path to compromised hosts.(Citation: Cisco Salt Typhoon FEB 2025)

Stuxnet

Stuxnet reduces the integrity level of objects to allow write actions.(Citation: Nicolas Falliere, Liam O Murchu, Eric Chien February 2011)

Magic Hound

Magic Hound has disabled LSA protection on compromised hosts using `"reg" add HKLM\SYSTEM\CurrentControlSet\Control\LSA /v RunAsPPL /t REG_DWORD /d 0 /f`.(Citation: DFIR Report APT35 ProxyShell March 2022)

Контрмеры

Контрмера Описание
Software Configuration

Software configuration refers to making security-focused adjustments to the settings of applications, middleware, databases, or other software to mitigate potential threats. These changes help reduce the attack surface, enforce best practices, and protect sensitive data. This mitigation can be implemented through the following measures: Conduct a Security Review of Application Settings: - Review the software documentation to identify recommended security configurations. - Compare default settings against organizational policies and compliance requirements. Implement Access Controls and Permissions: - Restrict access to sensitive features or data within the software. - Enforce least privilege principles for all roles and accounts interacting with the software. Enable Logging and Monitoring: - Configure detailed logging for key application events such as authentication failures, configuration changes, or unusual activity. - Integrate logs with a centralized monitoring solution, such as a SIEM. Update and Patch Software Regularly: - Ensure the software is kept up-to-date with the latest security patches to address known vulnerabilities. - Use automated patch management tools to streamline the update process. Disable Unnecessary Features or Services: - Turn off unused functionality or components that could introduce vulnerabilities, such as debugging interfaces or deprecated APIs. Test Configuration Changes: - Perform configuration changes in a staging environment before applying them in production. - Conduct regular audits to ensure that settings remain aligned with security policies. *Tools for Implementation* Configuration Management Tools: - Ansible: Automates configuration changes across multiple applications and environments. - Chef: Ensures consistent application settings through code-based configuration management. - Puppet: Automates software configurations and audits changes for compliance. Security Benchmarking Tools: - CIS-CAT: Provides benchmarks and audits for secure software configurations. - Aqua Security Trivy: Scans containerized applications for configuration issues. Vulnerability Management Solutions: - Nessus: Identifies misconfigurations and suggests corrective actions. Logging and Monitoring Tools: - Splunk: Aggregates and analyzes application logs to detect suspicious activity.

User Account Management

User Account Management involves implementing and enforcing policies for the lifecycle of user accounts, including creation, modification, and deactivation. Proper account management reduces the attack surface by limiting unauthorized access, managing account privileges, and ensuring accounts are used according to organizational policies. This mitigation can be implemented through the following measures: Enforcing the Principle of Least Privilege - Implementation: Assign users only the minimum permissions required to perform their job functions. Regularly audit accounts to ensure no excess permissions are granted. - Use Case: Reduces the risk of privilege escalation by ensuring accounts cannot perform unauthorized actions. Implementing Strong Password Policies - Implementation: Enforce password complexity requirements (e.g., length, character types). Require password expiration every 90 days and disallow password reuse. - Use Case: Prevents adversaries from gaining unauthorized access through password guessing or brute force attacks. Managing Dormant and Orphaned Accounts - Implementation: Implement automated workflows to disable accounts after a set period of inactivity (e.g., 30 days). Remove orphaned accounts (e.g., accounts without an assigned owner) during regular account audits. - Use Case: Eliminates dormant accounts that could be exploited by attackers. Account Lockout Policies - Implementation: Configure account lockout thresholds (e.g., lock accounts after five failed login attempts). Set lockout durations to a minimum of 15 minutes. - Use Case: Mitigates automated attack techniques that rely on repeated login attempts. Multi-Factor Authentication (MFA) for High-Risk Accounts - Implementation: Require MFA for all administrative accounts and high-risk users. Use MFA mechanisms like hardware tokens, authenticator apps, or biometrics. - Use Case: Prevents unauthorized access, even if credentials are stolen. Restricting Interactive Logins - Implementation: Restrict interactive logins for privileged accounts to specific secure systems or management consoles. Use group policies to enforce logon restrictions. - Use Case: Protects sensitive accounts from misuse or exploitation. *Tools for Implementation* Built-in Tools: - Microsoft Active Directory (AD): Centralized account management and RBAC enforcement. - Group Policy Object (GPO): Enforce password policies, logon restrictions, and account lockout policies. Identity and Access Management (IAM) Tools: - Okta: Centralized user provisioning, MFA, and SSO integration. - Microsoft Azure Active Directory: Provides advanced account lifecycle management, role-based access, and conditional access policies. Privileged Account Management (PAM): - CyberArk, BeyondTrust, Thycotic: Manage and monitor privileged account usage, enforce session recording, and JIT access.

Execution Prevention

Prevent the execution of unauthorized or malicious code on systems by implementing application control, script blocking, and other execution prevention mechanisms. This ensures that only trusted and authorized code is executed, reducing the risk of malware and unauthorized actions. This mitigation can be implemented through the following measures: Application Control: - Use Case: Use tools like AppLocker or Windows Defender Application Control (WDAC) to create whitelists of authorized applications and block unauthorized ones. On Linux, use tools like SELinux or AppArmor to define mandatory access control policies for application execution. - Implementation: Allow only digitally signed or pre-approved applications to execute on servers and endpoints. (e.g., `New-AppLockerPolicy -PolicyType Enforced -FilePath "C:\Policies\AppLocker.xml"`) Script Blocking: - Use Case: Use script control mechanisms to block unauthorized execution of scripts, such as PowerShell or JavaScript. Web Browsers: Use browser extensions or settings to block JavaScript execution from untrusted sources. - Implementation: Configure PowerShell to enforce Constrained Language Mode for non-administrator users. (e.g., `Set-ExecutionPolicy AllSigned`) Executable Blocking: - Use Case: Prevent execution of binaries from suspicious locations, such as `%TEMP%` or `%APPDATA%` directories. - Implementation: Block execution of `.exe`, `.bat`, or `.ps1` files from user-writable directories. Dynamic Analysis Prevention: - Use Case: Use behavior-based execution prevention tools to identify and block malicious activity in real time. - Implemenation: Employ EDR solutions that analyze runtime behavior and block suspicious code execution.

Restrict File and Directory Permissions

Restricting file and directory permissions involves setting access controls at the file system level to limit which users, groups, or processes can read, write, or execute files. By configuring permissions appropriately, organizations can reduce the attack surface for adversaries seeking to access sensitive data, plant malicious code, or tamper with system files. Enforce Least Privilege Permissions: - Remove unnecessary write permissions on sensitive files and directories. - Use file ownership and groups to control access for specific roles. Example (Windows): Right-click the shared folder → Properties → Security tab → Adjust permissions for NTFS ACLs. Harden File Shares: - Disable anonymous access to shared folders. - Enforce NTFS permissions for shared folders on Windows. Example: Set permissions to restrict write access to critical files, such as system executables (e.g., `/bin` or `/sbin` on Linux). Use tools like `chown` and `chmod` to assign file ownership and limit access. On Linux, apply: `chmod 750 /etc/sensitive.conf` `chown root:admin /etc/sensitive.conf` File Integrity Monitoring (FIM): - Use tools like Tripwire, Wazuh, or OSSEC to monitor changes to critical file permissions. Audit File System Access: - Enable auditing to track permission changes or unauthorized access attempts. - Use auditd (Linux) or Event Viewer (Windows) to log activities. Restrict Startup Directories: - Configure permissions to prevent unauthorized writes to directories like `C:\ProgramData\Microsoft\Windows\Start Menu`. Example: Restrict write access to critical directories like `/etc/`, `/usr/local/`, and Windows directories such as `C:\Windows\System32`. - On Windows, use icacls to modify permissions: `icacls "C:\Windows\System32" /inheritance:r /grant:r SYSTEM:(OI)(CI)F` - On Linux, monitor permissions using tools like `lsattr` or `auditd`.

Restrict Registry Permissions

Restricting registry permissions involves configuring access control settings for sensitive registry keys and hives to ensure that only authorized users or processes can make modifications. By limiting access, organizations can prevent unauthorized changes that adversaries might use for persistence, privilege escalation, or defense evasion. This mitigation can be implemented through the following measures: Review and Adjust Permissions on Critical Keys - Regularly review permissions on keys such as `Run`, `RunOnce`, and `Services` to ensure only authorized users have write access. - Use tools like `icacls` or `PowerShell` to automate permission adjustments. Enable Registry Auditing - Enable auditing on sensitive keys to log access attempts. - Use Event Viewer or SIEM solutions to analyze logs and detect suspicious activity. - Example Audit Policy: `auditpol /set /subcategory:"Registry" /success:enable /failure:enable` Protect Credential-Related Hives - Limit access to hives like `SAM`,`SECURITY`, and `SYSTEM` to prevent credential dumping or other unauthorized access. - Use LSA Protection to add an additional security layer for credential storage. Restrict Registry Editor Usage - Use Group Policy to restrict access to regedit.exe for non-administrative users. - Block execution of registry editing tools on endpoints where they are unnecessary. Deploy Baseline Configuration Tools - Use tools like Microsoft Security Compliance Toolkit or CIS Benchmarks to apply and maintain secure registry configurations. *Tools for Implementation* Registry Permission Tools: - Registry Editor (regedit): Built-in tool to manage registry permissions. - PowerShell: Automate permissions and manage keys. `Set-ItemProperty -Path "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run" -Name "KeyName" -Value "Value"` - icacls: Command-line tool to modify ACLs. Monitoring Tools: - Sysmon: Monitor and log registry events. - Event Viewer: View registry access logs. Policy Management Tools: - Group Policy Management Console (GPMC): Enforce registry permissions via GPOs. - Microsoft Endpoint Manager: Deploy configuration baselines for registry permissions.

Audit

Auditing is the process of recording activity and systematically reviewing and analyzing the activity and system configurations. The primary purpose of auditing is to detect anomalies and identify potential threats or weaknesses in the environment. Proper auditing configurations can also help to meet compliance requirements. The process of auditing encompasses regular analysis of user behaviors and system logs in support of proactive security measures. Auditing is applicable to all systems used within an organization, from the front door of a building to accessing a file on a fileserver. It is considered more critical for regulated industries such as, healthcare, finance and government where compliance requirements demand stringent tracking of user and system activates.This mitigation can be implemented through the following measures: System Audit: - Use Case: Regularly assess system configurations to ensure compliance with organizational security policies. - Implementation: Use tools to scan for deviations from established benchmarks. Permission Audits: - Use Case: Review file and folder permissions to minimize the risk of unauthorized access or privilege escalation. - Implementation: Run access reviews to identify users or groups with excessive permissions. Software Audits: - Use Case: Identify outdated, unsupported, or insecure software that could serve as an attack vector. - Implementation: Use inventory and vulnerability scanning tools to detect outdated versions and recommend secure alternatives. Configuration Audits: - Use Case: Evaluate system and network configurations to ensure secure settings (e.g., disabled SMBv1, enabled MFA). - Implementation: Implement automated configuration scanning tools like SCAP (Security Content Automation Protocol) to identify non-compliant systems. Network Audits: - Use Case: Examine network traffic, firewall rules, and endpoint communications to identify unauthorized or insecure connections. - Implementation: Utilize tools such as Wireshark, or Zeek to monitor and log suspicious network behavior.

Disable or Remove Feature or Program

Disable or remove unnecessary and potentially vulnerable software, features, or services to reduce the attack surface and prevent abuse by adversaries. This involves identifying software or features that are no longer needed or that could be exploited and ensuring they are either removed or properly disabled. This mitigation can be implemented through the following measures: Remove Legacy Software: - Use Case: Disable or remove older versions of software that no longer receive updates or security patches (e.g., legacy Java, Adobe Flash). - Implementation: A company removes Flash Player from all employee systems after it has reached its end-of-life date. Disable Unused Features: - Use Case: Turn off unnecessary operating system features like SMBv1, Telnet, or RDP if they are not required. - Implementation: Disable SMBv1 in a Windows environment to mitigate vulnerabilities like EternalBlue. Control Applications Installed by Users: - Use Case: Prevent users from installing unauthorized software via group policies or other management tools. - Implementation: Block user installations of unauthorized file-sharing applications (e.g., BitTorrent clients) in an enterprise environment. Remove Unnecessary Services: - Use Case: Identify and disable unnecessary default services running on endpoints, servers, or network devices. - Implementation: Disable unused administrative shares (e.g., C$, ADMIN$) on workstations. Restrict Add-ons and Plugins: - Use Case: Remove or disable browser plugins and add-ons that are not needed for business purposes. - Implementation: Disable Java and ActiveX plugins in web browsers to prevent drive-by attacks.

Обнаружение

Monitor processes and command-line arguments to see if security tools or logging services are killed or stop running. Monitor Registry edits for modifications to services and startup programs that correspond to security tools. Lack of log events may be suspicious. Monitor environment variables and APIs that can be leveraged to disable security measures.

Ссылки

  1. The DFIR Report. (2022, November 8). Emotet Strikes Again – LNK File Leads to Domain Wide Ransomware. Retrieved March 6, 2023.
  2. Punsaen Boonyakarn, Shawn Chew, Logeswaran Nadarajan, Mathew Potaczek, Jakub Jozwiak, and Alex Marvi. (2024, June 18). Cloaked and Covert: Uncovering UNC3886 Espionage Operations. Retrieved September 24, 2024.
  3. Microsoft. (n.d.). az monitor diagnostic-settings. Retrieved October 16, 2020.
  4. Google. (n.d.). Configuring Data Access audit logs. Retrieved October 16, 2020.
  5. Amazon Web Services. (n.d.). Stopping CloudTrail from Sending Events to CloudWatch Logs. Retrieved October 16, 2020.
  6. Chromium. (n.d.). HTTP Strict Transport Security. Retrieved May 24, 2023.
  7. Scott Henderson, Cristiana Kittner, Sarah Hawley & Mark Lechtik, Google Cloud. (2023, January 19). Suspected Chinese Threat Actors Exploiting FortiOS Vulnerability (CVE-2022-42475). Retrieved December 31, 2024.
  8. Symantec Threat Hunter Team. (2022, October 21). Exbyte: BlackByte Ransomware Attackers Deploy New Exfiltration Tool. Retrieved December 16, 2024.
  9. Cisco Talos. (2025, February 20). Weathering the storm: In the midst of a Typhoon. Retrieved February 24, 2025.
  10. Nicolas Falliere, Liam O Murchu, Eric Chien 2011, February W32.Stuxnet Dossier (Version 1.4) Retrieved November 17, 2024.
  11. Mandiant. (2021, January 19). Remediation and Hardening Strategies for Microsoft 365 to Defend Against UNC2452. Retrieved January 22, 2021.
  12. Martin Smolár. (2023, March 1). BlackLotus UEFI bootkit: Myth confirmed. Retrieved February 11, 2025.
  13. DFIR Report. (2022, March 21). APT35 Automates Initial Access Using ProxyShell. Retrieved May 25, 2022.
  14. Microsoft Incident Response. (2023, April 11). Guidance for investigating attacks using CVE-2022-21894: The BlackLotus campaign. Retrieved February 12, 2025.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.