Data from Configuration Repository: Дамп конфигурации сетевого устройства
Other sub-techniques of Data from Configuration Repository (2)
ID | Название |
---|---|
.001 | SNMP (дамп MIB) |
.002 | Дамп конфигурации сетевого устройства |
Adversaries may access network configuration files to collect sensitive data about the device and the network. The network configuration is a file containing parameters that determine the operation of the device. The device typically stores an in-memory copy of the configuration while operating, and a separate configuration on non-volatile storage to load after device reset. Adversaries can inspect the configuration files to reveal information about the target network and its layout, the network device and its software, or identifying legitimate accounts and credentials for later use. Adversaries can use common management tools and protocols, such as Simple Network Management Protocol (SNMP) and Smart Install (SMI), to access network configuration files.(Citation: US-CERT TA18-106A Network Infrastructure Devices 2018)(Citation: Cisco Blog Legacy Device Attacks) These tools may be used to query specific data from a configuration repository or configure the device to export the configuration for later analysis.
Примеры процедур |
|
Название | Описание |
---|---|
Salt Typhoon |
Salt Typhoon has attempted to acquire credentials by dumping network device configurations.(Citation: Cisco Salt Typhoon FEB 2025) |
Контрмеры |
|
Контрмера | Описание |
---|---|
Encrypt Sensitive Information |
Protect sensitive information at rest, in transit, and during processing by using strong encryption algorithms. Encryption ensures the confidentiality and integrity of data, preventing unauthorized access or tampering. This mitigation can be implemented through the following measures: Encrypt Data at Rest: - Use Case: Use full-disk encryption or file-level encryption to secure sensitive data stored on devices. - Implementation: Implement BitLocker for Windows systems or FileVault for macOS devices to encrypt hard drives. Encrypt Data in Transit: - Use Case: Use secure communication protocols (e.g., TLS, HTTPS) to encrypt sensitive data as it travels over networks. - Implementation: Enable HTTPS for all web applications and configure mail servers to enforce STARTTLS for email encryption. Encrypt Backups: - Use Case: Ensure that backup data is encrypted both during storage and transfer to prevent unauthorized access. - Implementation: Encrypt cloud backups using AES-256 before uploading them to Amazon S3 or Google Cloud. Encrypt Application Secrets: - Use Case: Store sensitive credentials, API keys, and configuration files in encrypted vaults. - Implementation: Use HashiCorp Vault or AWS Secrets Manager to manage and encrypt secrets. Database Encryption: - Use Case: Enable Transparent Data Encryption (TDE) or column-level encryption in database management systems. - Implementation: Use MySQL’s built-in encryption features to encrypt sensitive database fields such as social security numbers. |
Network Segmentation |
Network segmentation involves dividing a network into smaller, isolated segments to control and limit the flow of traffic between devices, systems, and applications. By segmenting networks, organizations can reduce the attack surface, restrict lateral movement by adversaries, and protect critical assets from compromise. Effective network segmentation leverages a combination of physical boundaries, logical separation through VLANs, and access control policies enforced by network appliances like firewalls, routers, and cloud-based configurations. This mitigation can be implemented through the following measures: Segment Critical Systems: - Identify and group systems based on their function, sensitivity, and risk. Examples include payment systems, HR databases, production systems, and internet-facing servers. - Use VLANs, firewalls, or routers to enforce logical separation. Implement DMZ for Public-Facing Services: - Host web servers, DNS servers, and email servers in a DMZ to limit their access to internal systems. - Apply strict firewall rules to filter traffic between the DMZ and internal networks. Use Cloud-Based Segmentation: - In cloud environments, use VPCs, subnets, and security groups to isolate applications and enforce traffic rules. - Apply AWS Transit Gateway or Azure VNet peering for controlled connectivity between cloud segments. Apply Microsegmentation for Workloads: - Use software-defined networking (SDN) tools to implement workload-level segmentation and prevent lateral movement. Restrict Traffic with ACLs and Firewalls: - Apply Access Control Lists (ACLs) to network devices to enforce "deny by default" policies. - Use firewalls to restrict both north-south (external-internal) and east-west (internal-internal) traffic. Monitor and Audit Segmented Networks: - Regularly review firewall rules, ACLs, and segmentation policies. - Monitor network flows for anomalies to ensure segmentation is effective. Test Segmentation Effectiveness: - Perform periodic penetration tests to verify that unauthorized access is blocked between network segments. |
Network Intrusion Prevention |
Use intrusion detection signatures to block traffic at network boundaries. |
Software Configuration |
Software configuration refers to making security-focused adjustments to the settings of applications, middleware, databases, or other software to mitigate potential threats. These changes help reduce the attack surface, enforce best practices, and protect sensitive data. This mitigation can be implemented through the following measures: Conduct a Security Review of Application Settings: - Review the software documentation to identify recommended security configurations. - Compare default settings against organizational policies and compliance requirements. Implement Access Controls and Permissions: - Restrict access to sensitive features or data within the software. - Enforce least privilege principles for all roles and accounts interacting with the software. Enable Logging and Monitoring: - Configure detailed logging for key application events such as authentication failures, configuration changes, or unusual activity. - Integrate logs with a centralized monitoring solution, such as a SIEM. Update and Patch Software Regularly: - Ensure the software is kept up-to-date with the latest security patches to address known vulnerabilities. - Use automated patch management tools to streamline the update process. Disable Unnecessary Features or Services: - Turn off unused functionality or components that could introduce vulnerabilities, such as debugging interfaces or deprecated APIs. Test Configuration Changes: - Perform configuration changes in a staging environment before applying them in production. - Conduct regular audits to ensure that settings remain aligned with security policies. *Tools for Implementation* Configuration Management Tools: - Ansible: Automates configuration changes across multiple applications and environments. - Chef: Ensures consistent application settings through code-based configuration management. - Puppet: Automates software configurations and audits changes for compliance. Security Benchmarking Tools: - CIS-CAT: Provides benchmarks and audits for secure software configurations. - Aqua Security Trivy: Scans containerized applications for configuration issues. Vulnerability Management Solutions: - Nessus: Identifies misconfigurations and suggests corrective actions. Logging and Monitoring Tools: - Splunk: Aggregates and analyzes application logs to detect suspicious activity. |
Filter Network Traffic |
Employ network appliances and endpoint software to filter ingress, egress, and lateral network traffic. This includes protocol-based filtering, enforcing firewall rules, and blocking or restricting traffic based on predefined conditions to limit adversary movement and data exfiltration. This mitigation can be implemented through the following measures: Ingress Traffic Filtering: - Use Case: Configure network firewalls to allow traffic only from authorized IP addresses to public-facing servers. - Implementation: Limit SSH (port 22) and RDP (port 3389) traffic to specific IP ranges. Egress Traffic Filtering: - Use Case: Use firewalls or endpoint security software to block unauthorized outbound traffic to prevent data exfiltration and command-and-control (C2) communications. - Implementation: Block outbound traffic to known malicious IPs or regions where communication is unexpected. Protocol-Based Filtering: - Use Case: Restrict the use of specific protocols that are commonly abused by adversaries, such as SMB, RPC, or Telnet, based on business needs. - Implementation: Disable SMBv1 on endpoints to prevent exploits like EternalBlue. Network Segmentation: - Use Case: Create network segments for critical systems and restrict communication between segments unless explicitly authorized. - Implementation: Implement VLANs to isolate IoT devices or guest networks from core business systems. Application Layer Filtering: - Use Case: Use proxy servers or Web Application Firewalls (WAFs) to inspect and block malicious HTTP/S traffic. - Implementation: Configure a WAF to block SQL injection attempts or other web application exploitation techniques. |
Update Software |
Software updates ensure systems are protected against known vulnerabilities by applying patches and upgrades provided by vendors. Regular updates reduce the attack surface and prevent adversaries from exploiting known security gaps. This includes patching operating systems, applications, drivers, and firmware. This mitigation can be implemented through the following measures: Regular Operating System Updates - Implementation: Apply the latest Windows security updates monthly using WSUS (Windows Server Update Services) or a similar patch management solution. Configure systems to check for updates automatically and schedule reboots during maintenance windows. - Use Case: Prevents exploitation of OS vulnerabilities such as privilege escalation or remote code execution. Application Patching - Implementation: Monitor Apache's update release notes for security patches addressing vulnerabilities. Schedule updates for off-peak hours to avoid downtime while maintaining security compliance. - Use Case: Prevents exploitation of web application vulnerabilities, such as those leading to unauthorized access or data breaches. Firmware Updates - Implementation: Regularly check the vendor’s website for firmware updates addressing vulnerabilities. Plan for update deployment during scheduled maintenance to minimize business disruption. - Use Case: Protects against vulnerabilities that adversaries could exploit to gain access to network devices or inject malicious traffic. Emergency Patch Deployment - Implementation: Use the emergency patch deployment feature of the organization's patch management tool to apply updates to all affected Exchange servers within 24 hours. - Use Case: Reduces the risk of exploitation by rapidly addressing critical vulnerabilities. Centralized Patch Management - Implementation: Implement a centralized patch management system, such as SCCM or ManageEngine, to automate and track patch deployment across all environments. Generate regular compliance reports to ensure all systems are updated. - Use Case: Streamlines patching processes and ensures no critical systems are missed. *Tools for Implementation* Patch Management Tools: - WSUS: Manage and deploy Microsoft updates across the organization. - ManageEngine Patch Manager Plus: Automate patch deployment for OS and third-party apps. - Ansible: Automate updates across multiple platforms, including Linux and Windows. Vulnerability Scanning Tools: - OpenVAS: Open-source vulnerability scanning to identify missing patches. |
Обнаружение
Identify network traffic sent or received by untrusted hosts or networks. Configure signatures to identify strings that may be found in a network device configuration.(Citation: US-CERT TA18-068A 2018)
Ссылки
- US-CERT. (2018, March 27). TA18-068A Brute Force Attacks Conducted by Cyber Actors. Retrieved October 2, 2019.
- Omar Santos. (2020, October 19). Attackers Continue to Target Legacy Devices. Retrieved October 20, 2020.
- US-CERT. (2018, April 20). Russian State-Sponsored Cyber Actors Targeting Network Infrastructure Devices. Retrieved October 19, 2020.
- US-CERT. (2017, June 5). Reducing the Risk of SNMP Abuse. Retrieved October 19, 2020.
- Cisco Talos. (2025, February 20). Weathering the storm: In the midst of a Typhoon. Retrieved February 24, 2025.
- Cisco. (2006, May 10). Securing Simple Network Management Protocol. Retrieved October 19, 2020.
Связанные риски
Каталоги
Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.