Куда я попал?
SECURITM это SGRC система, ? автоматизирующая процессы в службах информационной безопасности. SECURITM помогает построить и управлять ИСПДн, КИИ, ГИС, СМИБ/СУИБ, банковскими системами защиты.
А еще SECURITM это место для обмена опытом и наработками для служб безопасности.

Account Manipulation

Adversaries may manipulate accounts to maintain and/or elevate access to victim systems. Account manipulation may consist of any action that preserves or modifies adversary access to a compromised account, such as modifying credentials or permission groups.(Citation: FireEye SMOKEDHAM June 2021) These actions could also include account activity designed to subvert security policies, such as performing iterative password updates to bypass password duration policies and preserve the life of compromised credentials. In order to create or manipulate accounts, the adversary must already have sufficient permissions on systems or the domain. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged Valid Accounts.

ID: T1098
Sub-techniques:  .001 .002 .003 .004 .005 .006 .007
Tactic(s): Persistence, Privilege Escalation
Platforms: Containers, ESXi, IaaS, Identity Provider, Linux, macOS, Network Devices, Office Suite, SaaS, Windows
Data Sources: Active Directory: Active Directory Object Modification, Command: Command Execution, File: File Modification, Group: Group Modification, Process: Process Creation, User Account: User Account Modification
Version: 2.8
Created: 31 May 2017
Last Modified: 15 Apr 2025

Procedure Examples

Name Description
Lazarus Group

Lazarus Group malware WhiskeyDelta-Two contains a function that attempts to rename the administrator’s account.(Citation: Novetta Blockbuster)(Citation: Novetta Blockbuster Destructive Malware)

Dragonfly 2.0

Dragonfly 2.0 added newly created accounts to the administrators group to maintain elevated access.(Citation: US-CERT TA18-074A)(Citation: US-CERT APT Energy Oct 2017)

Mimikatz

The Mimikatz credential dumper has been extended to include Skeleton Key domain controller authentication bypass functionality. The LSADUMP::ChangeNTLM and LSADUMP::SetNTLM modules can also manipulate the password hash of an account without knowing the clear text value.(Citation: Adsecurity Mimikatz Guide)(Citation: Metcalf 2015)

Sandworm Team

Sandworm Team used the sp_addlinkedsrvlogin command in MS-SQL to create a link between a created account and other servers in the network.(Citation: Dragos Crashoverride 2018)

During the 2016 Ukraine Electric Power Attack, Sandworm Team used the `sp_addlinkedsrvlogin` command in MS-SQL to create a link between a created account and other servers in the network.(Citation: Dragos Crashoverride 2018)

HAFNIUM

HAFNIUM has granted privileges to domain accounts and reset the password for default admin accounts.(Citation: Volexity Exchange Marauder March 2021)(Citation: Microsoft Silk Typhoon MAR 2025)

Calisto

Calisto adds permissions and remote logins to all users.(Citation: Symantec Calisto July 2018)

Mitigations

Mitigation Description
Network Segmentation

Network segmentation involves dividing a network into smaller, isolated segments to control and limit the flow of traffic between devices, systems, and applications. By segmenting networks, organizations can reduce the attack surface, restrict lateral movement by adversaries, and protect critical assets from compromise. Effective network segmentation leverages a combination of physical boundaries, logical separation through VLANs, and access control policies enforced by network appliances like firewalls, routers, and cloud-based configurations. This mitigation can be implemented through the following measures: Segment Critical Systems: - Identify and group systems based on their function, sensitivity, and risk. Examples include payment systems, HR databases, production systems, and internet-facing servers. - Use VLANs, firewalls, or routers to enforce logical separation. Implement DMZ for Public-Facing Services: - Host web servers, DNS servers, and email servers in a DMZ to limit their access to internal systems. - Apply strict firewall rules to filter traffic between the DMZ and internal networks. Use Cloud-Based Segmentation: - In cloud environments, use VPCs, subnets, and security groups to isolate applications and enforce traffic rules. - Apply AWS Transit Gateway or Azure VNet peering for controlled connectivity between cloud segments. Apply Microsegmentation for Workloads: - Use software-defined networking (SDN) tools to implement workload-level segmentation and prevent lateral movement. Restrict Traffic with ACLs and Firewalls: - Apply Access Control Lists (ACLs) to network devices to enforce "deny by default" policies. - Use firewalls to restrict both north-south (external-internal) and east-west (internal-internal) traffic. Monitor and Audit Segmented Networks: - Regularly review firewall rules, ACLs, and segmentation policies. - Monitor network flows for anomalies to ensure segmentation is effective. Test Segmentation Effectiveness: - Perform periodic penetration tests to verify that unauthorized access is blocked between network segments.

Disable or Remove Feature or Program

Disable or remove unnecessary and potentially vulnerable software, features, or services to reduce the attack surface and prevent abuse by adversaries. This involves identifying software or features that are no longer needed or that could be exploited and ensuring they are either removed or properly disabled. This mitigation can be implemented through the following measures: Remove Legacy Software: - Use Case: Disable or remove older versions of software that no longer receive updates or security patches (e.g., legacy Java, Adobe Flash). - Implementation: A company removes Flash Player from all employee systems after it has reached its end-of-life date. Disable Unused Features: - Use Case: Turn off unnecessary operating system features like SMBv1, Telnet, or RDP if they are not required. - Implementation: Disable SMBv1 in a Windows environment to mitigate vulnerabilities like EternalBlue. Control Applications Installed by Users: - Use Case: Prevent users from installing unauthorized software via group policies or other management tools. - Implementation: Block user installations of unauthorized file-sharing applications (e.g., BitTorrent clients) in an enterprise environment. Remove Unnecessary Services: - Use Case: Identify and disable unnecessary default services running on endpoints, servers, or network devices. - Implementation: Disable unused administrative shares (e.g., C$, ADMIN$) on workstations. Restrict Add-ons and Plugins: - Use Case: Remove or disable browser plugins and add-ons that are not needed for business purposes. - Implementation: Disable Java and ActiveX plugins in web browsers to prevent drive-by attacks.

User Account Management

User Account Management involves implementing and enforcing policies for the lifecycle of user accounts, including creation, modification, and deactivation. Proper account management reduces the attack surface by limiting unauthorized access, managing account privileges, and ensuring accounts are used according to organizational policies. This mitigation can be implemented through the following measures: Enforcing the Principle of Least Privilege - Implementation: Assign users only the minimum permissions required to perform their job functions. Regularly audit accounts to ensure no excess permissions are granted. - Use Case: Reduces the risk of privilege escalation by ensuring accounts cannot perform unauthorized actions. Implementing Strong Password Policies - Implementation: Enforce password complexity requirements (e.g., length, character types). Require password expiration every 90 days and disallow password reuse. - Use Case: Prevents adversaries from gaining unauthorized access through password guessing or brute force attacks. Managing Dormant and Orphaned Accounts - Implementation: Implement automated workflows to disable accounts after a set period of inactivity (e.g., 30 days). Remove orphaned accounts (e.g., accounts without an assigned owner) during regular account audits. - Use Case: Eliminates dormant accounts that could be exploited by attackers. Account Lockout Policies - Implementation: Configure account lockout thresholds (e.g., lock accounts after five failed login attempts). Set lockout durations to a minimum of 15 minutes. - Use Case: Mitigates automated attack techniques that rely on repeated login attempts. Multi-Factor Authentication (MFA) for High-Risk Accounts - Implementation: Require MFA for all administrative accounts and high-risk users. Use MFA mechanisms like hardware tokens, authenticator apps, or biometrics. - Use Case: Prevents unauthorized access, even if credentials are stolen. Restricting Interactive Logins - Implementation: Restrict interactive logins for privileged accounts to specific secure systems or management consoles. Use group policies to enforce logon restrictions. - Use Case: Protects sensitive accounts from misuse or exploitation. *Tools for Implementation* Built-in Tools: - Microsoft Active Directory (AD): Centralized account management and RBAC enforcement. - Group Policy Object (GPO): Enforce password policies, logon restrictions, and account lockout policies. Identity and Access Management (IAM) Tools: - Okta: Centralized user provisioning, MFA, and SSO integration. - Microsoft Azure Active Directory: Provides advanced account lifecycle management, role-based access, and conditional access policies. Privileged Account Management (PAM): - CyberArk, BeyondTrust, Thycotic: Manage and monitor privileged account usage, enforce session recording, and JIT access.

Restrict File and Directory Permissions

Restricting file and directory permissions involves setting access controls at the file system level to limit which users, groups, or processes can read, write, or execute files. By configuring permissions appropriately, organizations can reduce the attack surface for adversaries seeking to access sensitive data, plant malicious code, or tamper with system files. Enforce Least Privilege Permissions: - Remove unnecessary write permissions on sensitive files and directories. - Use file ownership and groups to control access for specific roles. Example (Windows): Right-click the shared folder → Properties → Security tab → Adjust permissions for NTFS ACLs. Harden File Shares: - Disable anonymous access to shared folders. - Enforce NTFS permissions for shared folders on Windows. Example: Set permissions to restrict write access to critical files, such as system executables (e.g., `/bin` or `/sbin` on Linux). Use tools like `chown` and `chmod` to assign file ownership and limit access. On Linux, apply: `chmod 750 /etc/sensitive.conf` `chown root:admin /etc/sensitive.conf` File Integrity Monitoring (FIM): - Use tools like Tripwire, Wazuh, or OSSEC to monitor changes to critical file permissions. Audit File System Access: - Enable auditing to track permission changes or unauthorized access attempts. - Use auditd (Linux) or Event Viewer (Windows) to log activities. Restrict Startup Directories: - Configure permissions to prevent unauthorized writes to directories like `C:\ProgramData\Microsoft\Windows\Start Menu`. Example: Restrict write access to critical directories like `/etc/`, `/usr/local/`, and Windows directories such as `C:\Windows\System32`. - On Windows, use icacls to modify permissions: `icacls "C:\Windows\System32" /inheritance:r /grant:r SYSTEM:(OI)(CI)F` - On Linux, monitor permissions using tools like `lsattr` or `auditd`.

Multi-factor Authentication

Multi-Factor Authentication (MFA) enhances security by requiring users to provide at least two forms of verification to prove their identity before granting access. These factors typically include: - *Something you know*: Passwords, PINs. - *Something you have*: Physical tokens, smartphone authenticator apps. - *Something you are*: Biometric data such as fingerprints, facial recognition, or retinal scans. Implementing MFA across all critical systems and services ensures robust protection against account takeover and unauthorized access. This mitigation can be implemented through the following measures: Identity and Access Management (IAM): - Use IAM solutions like Azure Active Directory, Okta, or AWS IAM to enforce MFA policies for all user logins, especially for privileged roles. - Enable conditional access policies to enforce MFA for risky sign-ins (e.g., unfamiliar devices, geolocations). Authentication Tools and Methods: - Use authenticator applications such as Google Authenticator, Microsoft Authenticator, or Authy for time-based one-time passwords (TOTP). - Deploy hardware-based tokens like YubiKey, RSA SecurID, or smart cards for additional security. - Enforce biometric authentication for compatible devices and applications. Secure Legacy Systems: - Integrate MFA solutions with older systems using third-party tools like Duo Security or Thales SafeNet. - Enable RADIUS/NPS servers to facilitate MFA for VPNs, RDP, and other network logins. Monitoring and Alerting: - Use SIEM tools to monitor failed MFA attempts, login anomalies, or brute-force attempts against MFA systems. - Implement alerts for suspicious MFA activities, such as repeated failed codes or new device registrations. Training and Policy Enforcement: - Educate employees on the importance of MFA and secure authenticator usage. - Enforce policies that require MFA on all critical systems, especially for remote access, privileged accounts, and cloud applications.

Privileged Account Management

Privileged Account Management focuses on implementing policies, controls, and tools to securely manage privileged accounts (e.g., SYSTEM, root, or administrative accounts). This includes restricting access, limiting the scope of permissions, monitoring privileged account usage, and ensuring accountability through logging and auditing.This mitigation can be implemented through the following measures: Account Permissions and Roles: - Implement RBAC and least privilege principles to allocate permissions securely. - Use tools like Active Directory Group Policies to enforce access restrictions. Credential Security: - Deploy password vaulting tools like CyberArk, HashiCorp Vault, or KeePass for secure storage and rotation of credentials. - Enforce password policies for complexity, uniqueness, and expiration using tools like Microsoft Group Policy Objects (GPO). Multi-Factor Authentication (MFA): - Enforce MFA for all privileged accounts using Duo Security, Okta, or Microsoft Azure AD MFA. Privileged Access Management (PAM): - Use PAM solutions like CyberArk, BeyondTrust, or Thycotic to manage, monitor, and audit privileged access. Auditing and Monitoring: - Integrate activity monitoring into your SIEM (e.g., Splunk or QRadar) to detect and alert on anomalous privileged account usage. Just-In-Time Access: - Deploy JIT solutions like Azure Privileged Identity Management (PIM) or configure ephemeral roles in AWS and GCP to grant time-limited elevated permissions. *Tools for Implementation* Privileged Access Management (PAM): - CyberArk, BeyondTrust, Thycotic, HashiCorp Vault. Credential Management: - Microsoft LAPS (Local Admin Password Solution), Password Safe, HashiCorp Vault, KeePass. Multi-Factor Authentication: - Duo Security, Okta, Microsoft Azure MFA, Google Authenticator. Linux Privilege Management: - sudo configuration, SELinux, AppArmor. Just-In-Time Access: - Azure Privileged Identity Management (PIM), AWS IAM Roles with session constraints, GCP Identity-Aware Proxy.

Operating System Configuration

Operating System Configuration involves adjusting system settings and hardening the default configurations of an operating system (OS) to mitigate adversary exploitation and prevent abuse of system functionality. Proper OS configurations address security vulnerabilities, limit attack surfaces, and ensure robust defense against a wide range of techniques. This mitigation can be implemented through the following measures: Disable Unused Features: - Turn off SMBv1, LLMNR, and NetBIOS where not needed. - Disable remote registry and unnecessary services. Enforce OS-level Protections: - Enable Data Execution Prevention (DEP), Address Space Layout Randomization (ASLR), and Control Flow Guard (CFG) on Windows. - Use AppArmor or SELinux on Linux for mandatory access controls. Secure Access Settings: - Enable User Account Control (UAC) for Windows. - Restrict root/sudo access on Linux/macOS and enforce strong permissions using sudoers files. File System Hardening: - Implement least-privilege access for critical files and system directories. - Audit permissions regularly using tools like icacls (Windows) or getfacl/chmod (Linux/macOS). Secure Remote Access: - Restrict RDP, SSH, and VNC to authorized IPs using firewall rules. - Enable NLA for RDP and enforce strong password/lockout policies. Harden Boot Configurations: - Enable Secure Boot and enforce UEFI/BIOS password protection. - Use BitLocker or LUKS to encrypt boot drives. Regular Audits: - Periodically audit OS configurations using tools like CIS Benchmarks or SCAP tools. *Tools for Implementation* Windows: - Microsoft Group Policy Objects (GPO): Centrally enforce OS security settings. - Windows Defender Exploit Guard: Built-in OS protection against exploits. - CIS-CAT Pro: Audit Windows security configurations based on CIS Benchmarks. Linux/macOS: - AppArmor/SELinux: Enforce mandatory access controls. - Lynis: Perform comprehensive security audits. - SCAP Security Guide: Automate configuration hardening using Security Content Automation Protocol. Cross-Platform: - Ansible or Chef/Puppet: Automate configuration hardening at scale. - OpenSCAP: Perform compliance and configuration checks.

Detection

Collect events that correlate with changes to account objects and/or permissions on systems and the domain, such as event IDs 4738, 4728 and 4670.(Citation: Microsoft User Modified Event)(Citation: Microsoft Security Event 4670)(Citation: Microsoft Security Event 4670) Monitor for modification of accounts in correlation with other suspicious activity. Changes may occur at unusual times or from unusual systems. Especially flag events where the subject and target accounts differ(Citation: InsiderThreat ChangeNTLM July 2017) or that include additional flags such as changing a password without knowledge of the old password.(Citation: GitHub Mimikatz Issue 92 June 2017) Monitor for use of credentials at unusual times or to unusual systems or services. This may also correlate with other suspicious activity. Monitor for unusual permissions changes that may indicate excessively broad permissions being granted to compromised accounts. However, account manipulation may also lead to privilege escalation where modifications grant access to additional roles, permissions, or higher-privileged Valid Accounts

References

  1. US-CERT. (2017, October 20). Alert (TA17-293A): Advanced Persistent Threat Activity Targeting Energy and Other Critical Infrastructure Sectors. Retrieved November 2, 2017.
  2. US-CERT. (2018, March 16). Alert (TA18-074A): Russian Government Cyber Activity Targeting Energy and Other Critical Infrastructure Sectors. Retrieved June 6, 2018.
  3. Joe Slowik. (2018, October 12). Anatomy of an Attack: Detecting and Defeating CRASHOVERRIDE. Retrieved December 18, 2020.
  4. Warren, J. (2017, June 22). lsadump::changentlm and lsadump::setntlm work, but generate Windows events #92. Retrieved December 4, 2017.
  5. Warren, J. (2017, July 11). Manipulating User Passwords with Mimikatz. Retrieved December 4, 2017.
  6. Lich, B., Miroshnikov, A. (2017, April 5). 4738(S): A user account was changed. Retrieved June 30, 2017.
  7. Franklin Smith, R. (n.d.). Windows Security Log Event ID 4670. Retrieved November 4, 2019.
  8. FireEye. (2021, June 16). Smoking Out a DARKSIDE Affiliate’s Supply Chain Software Compromise. Retrieved September 22, 2021.
  9. Novetta Threat Research Group. (2016, February 24). Operation Blockbuster: Unraveling the Long Thread of the Sony Attack. Retrieved February 25, 2016.
  10. Novetta Threat Research Group. (2016, February 24). Operation Blockbuster: Destructive Malware Report. Retrieved November 17, 2024.
  11. Microsoft. (2020, September 16). Azure Active Directory security operations for devices. Retrieved February 21, 2023.
  12. Metcalf, S. (2015, January 19). Attackers Can Now Use Mimikatz to Implant Skeleton Key on Domain Controllers & BackDoor Your Active Directory Forest. Retrieved February 3, 2015.
  13. Metcalf, S. (2015, November 13). Unofficial Guide to Mimikatz & Command Reference. Retrieved December 23, 2015.
  14. Microsoft Threat Intelligence . (2025, March 5). Silk Typhoon targeting IT supply chain. Retrieved March 20, 2025.
  15. Gruzweig, J. et al. (2021, March 2). Operation Exchange Marauder: Active Exploitation of Multiple Zero-Day Microsoft Exchange Vulnerabilities. Retrieved March 3, 2021.
  16. Pantig, J. (2018, July 30). OSX.Calisto. Retrieved September 7, 2018.

Связанные риски

Ничего не найдено

Каталоги

Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.