Куда я попал?
Подготовка ресурсов
The adversary is trying to establish resources they can use to support operations.
Resource Development consists of techniques that involve adversaries creating, purchasing, or compromising/stealing resources that can be used to support targeting. Such resources include infrastructure, accounts, or capabilities. These resources can be leveraged by the adversary to aid in other phases of the adversary lifecycle, such as using purchased domains to support Command and Control, email accounts for phishing as a part of Initial Access, or stealing code signing certificates to help with Defense Evasion.
ID: TA0042
Created: 2020-09-30 16:12:00.000000
Last Modified: 2020-09-30 16:31:36.000000
Techniques(7)
|
|||
ID | Name | Description | |
T1583 | Приобретение инфраструктуры | Adversaries may buy, lease, or rent infrastructure that can be used during targeting. A wide variety of infrastructure exists for hosting and orchestrating adversary operations. Infrastructure solutions include physical or cloud servers, domains, and third-party web services.(Citation: TrendmicroHideoutsLease) Additionally, botnets are available for rent or purchase. Use of these infrastructure solutions allows an adversary to stage, launch, and execute an operation. Solutions may help adversary operations blend in with traffic that is seen as normal, such as contact to third-party web services. Depending on the implementation, adversaries may use infrastructure that makes it difficult to physically tie back to them as well as utilize infrastructure that can be rapidly provisioned, modified, and shut down. | |
.001 | Domains | Adversaries may acquire domains that can be used during targeting. Domain names are the human readable names used to represent one or more IP addresses. They can be purchased or, in some cases, acquired for free. Adversaries may use acquired domains for a variety of purposes, including for Phishing, Drive-by Compromise, and Command and Control.(Citation: CISA MSS Sep 2020) Adversaries may choose domains that are similar to legitimate domains, including through use of homoglyphs or use of a different top-level domain (TLD).(Citation: FireEye APT28)(Citation: PaypalScam) Typosquatting may be used to aid in delivery of payloads via Drive-by Compromise. Adversaries may also use internationalized domain names (IDNs) and different character sets (e.g. Cyrillic, Greek, etc.) to execute "IDN homograph attacks," creating visually similar lookalike domains used to deliver malware to victim machines.(Citation: CISA IDN ST05-016)(Citation: tt_httrack_fake_domains)(Citation: tt_obliqueRAT)(Citation: httrack_unhcr)(Citation: lazgroup_idn_phishing) Adversaries may also acquire and repurpose expired domains, which may be potentially already allowlisted/trusted by defenders based on an existing reputation/history.(Citation: Categorisation_not_boundary)(Citation: Domain_Steal_CC)(Citation: Redirectors_Domain_Fronting)(Citation: bypass_webproxy_filtering) Domain registrars each maintain a publicly viewable database that displays contact information for every registered domain. Private WHOIS services display alternative information, such as their own company data, rather than the owner of the domain. Adversaries may use such private WHOIS services to obscure information about who owns a purchased domain. Adversaries may further interrupt efforts to track their infrastructure by using varied registration information and purchasing domains with different domain registrars.(Citation: Mandiant APT1) | |
.002 | DNS Server | Adversaries may set up their own Domain Name System (DNS) servers that can be used during targeting. During post-compromise activity, adversaries may utilize DNS traffic for various tasks, including for Command and Control (ex: Application Layer Protocol). Instead of hijacking existing DNS servers, adversaries may opt to configure and run their own DNS servers in support of operations. By running their own DNS servers, adversaries can have more control over how they administer server-side DNS C2 traffic (DNS). With control over a DNS server, adversaries can configure DNS applications to provide conditional responses to malware and, generally, have more flexibility in the structure of the DNS-based C2 channel.(Citation: Unit42 DNS Mar 2019) | |
.003 | Virtual Private Server | Adversaries may rent Virtual Private Servers (VPSs) that can be used during targeting. There exist a variety of cloud service providers that will sell virtual machines/containers as a service. By utilizing a VPS, adversaries can make it difficult to physically tie back operations to them. The use of cloud infrastructure can also make it easier for adversaries to rapidly provision, modify, and shut down their infrastructure. Acquiring a VPS for use in later stages of the adversary lifecycle, such as Command and Control, can allow adversaries to benefit from the ubiquity and trust associated with higher reputation cloud service providers. Adversaries may also acquire infrastructure from VPS service providers that are known for renting VPSs with minimal registration information, allowing for more anonymous acquisitions of infrastructure.(Citation: TrendmicroHideoutsLease) | |
.004 | Server | Adversaries may buy, lease, or rent physical servers that can be used during targeting. Use of servers allows an adversary to stage, launch, and execute an operation. During post-compromise activity, adversaries may utilize servers for various tasks, including for Command and Control. Instead of compromising a third-party Server or renting a Virtual Private Server, adversaries may opt to configure and run their own servers in support of operations. Adversaries may only need a lightweight setup if most of their activities will take place using online infrastructure. Or, they may need to build extensive infrastructure if they want to test, communicate, and control other aspects of their activities on their own systems.(Citation: NYTStuxnet) | |
.005 | Botnet | Adversaries may buy, lease, or rent a network of compromised systems that can be used during targeting. A botnet is a network of compromised systems that can be instructed to perform coordinated tasks.(Citation: Norton Botnet) Adversaries may purchase a subscription to use an existing botnet from a booter/stresser service. With a botnet at their disposal, adversaries may perform follow-on activity such as large-scale Phishing or Distributed Denial of Service (DDoS).(Citation: Imperva DDoS for Hire)(Citation: Krebs-Anna)(Citation: Krebs-Bazaar)(Citation: Krebs-Booter) | |
.006 | Web Services | Adversaries may register for web services that can be used during targeting. A variety of popular websites exist for adversaries to register for a web-based service that can be abused during later stages of the adversary lifecycle, such as during Command and Control (Web Service) or Exfiltration Over Web Service. Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. By utilizing a web service, adversaries can make it difficult to physically tie back operations to them. | |
.007 | Serverless | Adversaries may purchase and configure serverless cloud infrastructure, such as Cloudflare Workers or AWS Lambda functions, that can be used during targeting. By utilizing serverless infrastructure, adversaries can make it more difficult to attribute infrastructure used during operations back to them. Once acquired, the serverless runtime environment can be leveraged to either respond directly to infected machines or to Proxy traffic to an adversary-owned command and control server.(Citation: BlackWater Malware Cloudflare Workers)(Citation: AWS Lambda Redirector) As traffic generated by these functions will appear to come from subdomains of common cloud providers, it may be difficult to distinguish from ordinary traffic to these providers.(Citation: Detecting Command & Control in the Cloud)(Citation: BlackWater Malware Cloudflare Workers) | |
T1586 | Компрометация учетных записей | Adversaries may compromise accounts with services that can be used during targeting. For operations incorporating social engineering, the utilization of an online persona may be important. Rather than creating and cultivating accounts (i.e. Establish Accounts), adversaries may compromise existing accounts. Utilizing an existing persona may engender a level of trust in a potential victim if they have a relationship, or knowledge of, the compromised persona. A variety of methods exist for compromising accounts, such as gathering credentials via Phishing for Information, purchasing credentials from third-party sites, or by brute forcing credentials (ex: password reuse from breach credential dumps).(Citation: AnonHBGary) Prior to compromising accounts, adversaries may conduct Reconnaissance to inform decisions about which accounts to compromise to further their operation. Personas may exist on a single site or across multiple sites (ex: Facebook, LinkedIn, Twitter, Google, etc.). Compromised accounts may require additional development, this could include filling out or modifying profile information, further developing social networks, or incorporating photos. Adversaries may directly leverage compromised email accounts for Phishing for Information or Phishing. | |
.001 | Social Media Accounts | Adversaries may compromise social media accounts that can be used during targeting. For operations incorporating social engineering, the utilization of an online persona may be important. Rather than creating and cultivating social media profiles (i.e. Social Media Accounts), adversaries may compromise existing social media accounts. Utilizing an existing persona may engender a level of trust in a potential victim if they have a relationship, or knowledge of, the compromised persona. A variety of methods exist for compromising social media accounts, such as gathering credentials via Phishing for Information, purchasing credentials from third-party sites, or by brute forcing credentials (ex: password reuse from breach credential dumps).(Citation: AnonHBGary) Prior to compromising social media accounts, adversaries may conduct Reconnaissance to inform decisions about which accounts to compromise to further their operation. Personas may exist on a single site or across multiple sites (ex: Facebook, LinkedIn, Twitter, etc.). Compromised social media accounts may require additional development, this could include filling out or modifying profile information, further developing social networks, or incorporating photos. Adversaries can use a compromised social media profile to create new, or hijack existing, connections to targets of interest. These connections may be direct or may include trying to connect through others.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage) Compromised profiles may be leveraged during other phases of the adversary lifecycle, such as during Initial Access (ex: Spearphishing via Service). | |
.002 | Email Accounts | Adversaries may compromise email accounts that can be used during targeting. Adversaries can use compromised email accounts to further their operations, such as leveraging them to conduct Phishing for Information or Phishing. Utilizing an existing persona with a compromised email account may engender a level of trust in a potential victim if they have a relationship, or knowledge of, the compromised persona. Compromised email accounts can also be used in the acquisition of infrastructure (ex: Domains). A variety of methods exist for compromising email accounts, such as gathering credentials via Phishing for Information, purchasing credentials from third-party sites, or by brute forcing credentials (ex: password reuse from breach credential dumps).(Citation: AnonHBGary) Prior to compromising email accounts, adversaries may conduct Reconnaissance to inform decisions about which accounts to compromise to further their operation. Adversaries can use a compromised email account to hijack existing email threads with targets of interest. | |
.003 | Cloud Accounts | Adversaries may compromise cloud accounts that can be used during targeting. Adversaries can use compromised cloud accounts to further their operations, including leveraging cloud storage services such as Dropbox, Microsoft OneDrive, or AWS S3 buckets for Exfiltration to Cloud Storage or to Upload Tools. Cloud accounts can also be used in the acquisition of infrastructure, such as Virtual Private Servers or Serverless infrastructure. Compromising cloud accounts may allow adversaries to develop sophisticated capabilities without managing their own servers.(Citation: Awake Security C2 Cloud) A variety of methods exist for compromising cloud accounts, such as gathering credentials via Phishing for Information, purchasing credentials from third-party sites, conducting Password Spraying attacks, or attempting to Steal Application Access Tokens.(Citation: MSTIC Nobelium Oct 2021) Prior to compromising cloud accounts, adversaries may conduct Reconnaissance to inform decisions about which accounts to compromise to further their operation. In some cases, adversaries may target privileged service provider accounts with the intent of leveraging a Trusted Relationship between service providers and their customers.(Citation: MSTIC Nobelium Oct 2021) | |
T1584 | Компрометация сторонней инфраструктуры | Adversaries may compromise third-party infrastructure that can be used during targeting. Infrastructure solutions include physical or cloud servers, domains, and third-party web and DNS services. Instead of buying, leasing, or renting infrastructure an adversary may compromise infrastructure and use it during other phases of the adversary lifecycle.(Citation: Mandiant APT1)(Citation: ICANNDomainNameHijacking)(Citation: Talos DNSpionage Nov 2018)(Citation: FireEye EPS Awakens Part 2) Additionally, adversaries may compromise numerous machines to form a botnet they can leverage. Use of compromised infrastructure allows an adversary to stage, launch, and execute an operation. Compromised infrastructure can help adversary operations blend in with traffic that is seen as normal, such as contact with high reputation or trusted sites. For example, adversaries may leverage compromised infrastructure (potentially also in conjunction with Digital Certificates) to further blend in and support staged information gathering and/or Phishing campaigns.(Citation: FireEye DNS Hijack 2019) By using compromised infrastructure, adversaries may make it difficult to tie their actions back to them. Prior to targeting, adversaries may compromise the infrastructure of other adversaries.(Citation: NSA NCSC Turla OilRig) | |
.001 | Domains | Adversaries may hijack domains and/or subdomains that can be used during targeting. Domain registration hijacking is the act of changing the registration of a domain name without the permission of the original registrant.(Citation: ICANNDomainNameHijacking) Adversaries may gain access to an email account for the person listed as the owner of the domain. The adversary can then claim that they forgot their password in order to make changes to the domain registration. Other possibilities include social engineering a domain registration help desk to gain access to an account or taking advantage of renewal process gaps.(Citation: Krebs DNS Hijack 2019) Subdomain hijacking can occur when organizations have DNS entries that point to non-existent or deprovisioned resources. In such cases, an adversary may take control of a subdomain to conduct operations with the benefit of the trust associated with that domain.(Citation: Microsoft Sub Takeover 2020) | |
.002 | DNS Server | Adversaries may compromise third-party DNS servers that can be used during targeting. During post-compromise activity, adversaries may utilize DNS traffic for various tasks, including for Command and Control (ex: Application Layer Protocol). Instead of setting up their own DNS servers, adversaries may compromise third-party DNS servers in support of operations. By compromising DNS servers, adversaries can alter DNS records. Such control can allow for redirection of an organization's traffic, facilitating Collection and Credential Access efforts for the adversary.(Citation: Talos DNSpionage Nov 2018)(Citation: FireEye DNS Hijack 2019) Additionally, adversaries may leverage such control in conjunction with Digital Certificates to redirect traffic to adversary-controlled infrastructure, mimicking normal trusted network communications.(Citation: FireEye DNS Hijack 2019)(Citation: Crowdstrike DNS Hijack 2019) Adversaries may also be able to silently create subdomains pointed at malicious servers without tipping off the actual owner of the DNS server.(Citation: CiscoAngler)(Citation: Proofpoint Domain Shadowing) | |
.003 | Virtual Private Server | Adversaries may compromise third-party Virtual Private Servers (VPSs) that can be used during targeting. There exist a variety of cloud service providers that will sell virtual machines/containers as a service. Adversaries may compromise VPSs purchased by third-party entities. By compromising a VPS to use as infrastructure, adversaries can make it difficult to physically tie back operations to themselves.(Citation: NSA NCSC Turla OilRig) Compromising a VPS for use in later stages of the adversary lifecycle, such as Command and Control, can allow adversaries to benefit from the ubiquity and trust associated with higher reputation cloud service providers as well as that added by the compromised third-party. | |
.004 | Server | Adversaries may compromise third-party servers that can be used during targeting. Use of servers allows an adversary to stage, launch, and execute an operation. During post-compromise activity, adversaries may utilize servers for various tasks, including for Command and Control. Instead of purchasing a Server or Virtual Private Server, adversaries may compromise third-party servers in support of operations. Adversaries may also compromise web servers to support watering hole operations, as in Drive-by Compromise. | |
.005 | Botnet | Adversaries may compromise numerous third-party systems to form a botnet that can be used during targeting. A botnet is a network of compromised systems that can be instructed to perform coordinated tasks.(Citation: Norton Botnet) Instead of purchasing/renting a botnet from a booter/stresser service, adversaries may build their own botnet by compromising numerous third-party systems.(Citation: Imperva DDoS for Hire) Adversaries may also conduct a takeover of an existing botnet, such as redirecting bots to adversary-controlled C2 servers.(Citation: Dell Dridex Oct 2015) With a botnet at their disposal, adversaries may perform follow-on activity such as large-scale Phishing or Distributed Denial of Service (DDoS). | |
.006 | Web Services | Adversaries may compromise access to third-party web services that can be used during targeting. A variety of popular websites exist for legitimate users to register for web-based services, such as GitHub, Twitter, Dropbox, Google, etc. Adversaries may try to take ownership of a legitimate user's access to a web service and use that web service as infrastructure in support of cyber operations. Such web services can be abused during later stages of the adversary lifecycle, such as during Command and Control (Web Service) or Exfiltration Over Web Service.(Citation: Recorded Future Turla Infra 2020) Using common services, such as those offered by Google or Twitter, makes it easier for adversaries to hide in expected noise. By utilizing a web service, particularly when access is stolen from legitimate users, adversaries can make it difficult to physically tie back operations to them. | |
.007 | Serverless | Adversaries may compromise serverless cloud infrastructure, such as Cloudflare Workers or AWS Lambda functions, that can be used during targeting. By utilizing serverless infrastructure, adversaries can make it more difficult to attribute infrastructure used during operations back to them. Once compromised, the serverless runtime environment can be leveraged to either respond directly to infected machines or to Proxy traffic to an adversary-owned command and control server.(Citation: BlackWater Malware Cloudflare Workers)(Citation: AWS Lambda Redirector) As traffic generated by these functions will appear to come from subdomains of common cloud providers, it may be difficult to distinguish from ordinary traffic to these providers.(Citation: Detecting Command & Control in the Cloud)(Citation: BlackWater Malware Cloudflare Workers) | |
T1587 | Разработка собственных средств | Adversaries may build capabilities that can be used during targeting. Rather than purchasing, freely downloading, or stealing capabilities, adversaries may develop their own capabilities in-house. This is the process of identifying development requirements and building solutions such as malware, exploits, and self-signed certificates. Adversaries may develop capabilities to support their operations throughout numerous phases of the adversary lifecycle.(Citation: Mandiant APT1)(Citation: Kaspersky Sofacy)(Citation: Bitdefender StrongPity June 2020)(Citation: Talos Promethium June 2020) As with legitimate development efforts, different skill sets may be required for developing capabilities. The skills needed may be located in-house, or may need to be contracted out. Use of a contractor may be considered an extension of that adversary's development capabilities, provided the adversary plays a role in shaping requirements and maintains a degree of exclusivity to the capability. | |
.001 | Malware | Adversaries may develop malware and malware components that can be used during targeting. Building malicious software can include the development of payloads, droppers, post-compromise tools, backdoors (including backdoored images), packers, C2 protocols, and the creation of infected removable media. Adversaries may develop malware to support their operations, creating a means for maintaining control of remote machines, evading defenses, and executing post-compromise behaviors.(Citation: Mandiant APT1)(Citation: Kaspersky Sofacy)(Citation: ActiveMalwareEnergy)(Citation: FBI Flash FIN7 USB) As with legitimate development efforts, different skill sets may be required for developing malware. The skills needed may be located in-house, or may need to be contracted out. Use of a contractor may be considered an extension of that adversary's malware development capabilities, provided the adversary plays a role in shaping requirements and maintains a degree of exclusivity to the malware. Some aspects of malware development, such as C2 protocol development, may require adversaries to obtain additional infrastructure. For example, malware developed that will communicate with Twitter for C2, may require use of Web Services.(Citation: FireEye APT29) | |
.002 | Code Signing Certificates | Adversaries may create self-signed code signing certificates that can be used during targeting. Code signing is the process of digitally signing executables and scripts to confirm the software author and guarantee that the code has not been altered or corrupted. Code signing provides a level of authenticity for a program from the developer and a guarantee that the program has not been tampered with.(Citation: Wikipedia Code Signing) Users and/or security tools may trust a signed piece of code more than an unsigned piece of code even if they don't know who issued the certificate or who the author is. Prior to Code Signing, adversaries may develop self-signed code signing certificates for use in operations. | |
.003 | Digital Certificates | Adversaries may create self-signed SSL/TLS certificates that can be used during targeting. SSL/TLS certificates are designed to instill trust. They include information about the key, information about its owner's identity, and the digital signature of an entity that has verified the certificate's contents are correct. If the signature is valid, and the person examining the certificate trusts the signer, then they know they can use that key to communicate with its owner. In the case of self-signing, digital certificates will lack the element of trust associated with the signature of a third-party certificate authority (CA). Adversaries may create self-signed SSL/TLS certificates that can be used to further their operations, such as encrypting C2 traffic (ex: Asymmetric Cryptography with Web Protocols) or even enabling Adversary-in-the-Middle if added to the root of trust (i.e. Install Root Certificate). After creating a digital certificate, an adversary may then install that certificate (see Install Digital Certificate) on infrastructure under their control. | |
.004 | Exploits | Adversaries may develop exploits that can be used during targeting. An exploit takes advantage of a bug or vulnerability in order to cause unintended or unanticipated behavior to occur on computer hardware or software. Rather than finding/modifying exploits from online or purchasing them from exploit vendors, an adversary may develop their own exploits.(Citation: NYTStuxnet) Adversaries may use information acquired via Vulnerabilities to focus exploit development efforts. As part of the exploit development process, adversaries may uncover exploitable vulnerabilities through methods such as fuzzing and patch analysis.(Citation: Irongeek Sims BSides 2017) As with legitimate development efforts, different skill sets may be required for developing exploits. The skills needed may be located in-house, or may need to be contracted out. Use of a contractor may be considered an extension of that adversary's exploit development capabilities, provided the adversary plays a role in shaping requirements and maintains an initial degree of exclusivity to the exploit. Adversaries may use exploits during various phases of the adversary lifecycle (i.e. Exploit Public-Facing Application, Exploitation for Client Execution, Exploitation for Privilege Escalation, Exploitation for Defense Evasion, Exploitation for Credential Access, Exploitation of Remote Services, and Application or System Exploitation). | |
T1585 | Создание учетных записей | Adversaries may create and cultivate accounts with services that can be used during targeting. Adversaries can create accounts that can be used to build a persona to further operations. Persona development consists of the development of public information, presence, history and appropriate affiliations. This development could be applied to social media, website, or other publicly available information that could be referenced and scrutinized for legitimacy over the course of an operation using that persona or identity.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage) For operations incorporating social engineering, the utilization of an online persona may be important. These personas may be fictitious or impersonate real people. The persona may exist on a single site or across multiple sites (ex: Facebook, LinkedIn, Twitter, Google, GitHub, Docker Hub, etc.). Establishing a persona may require development of additional documentation to make them seem real. This could include filling out profile information, developing social networks, or incorporating photos.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage) Establishing accounts can also include the creation of accounts with email providers, which may be directly leveraged for Phishing for Information or Phishing.(Citation: Mandiant APT1) | |
.001 | Social Media Accounts | Adversaries may create and cultivate social media accounts that can be used during targeting. Adversaries can create social media accounts that can be used to build a persona to further operations. Persona development consists of the development of public information, presence, history and appropriate affiliations.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage) For operations incorporating social engineering, the utilization of a persona on social media may be important. These personas may be fictitious or impersonate real people. The persona may exist on a single social media site or across multiple sites (ex: Facebook, LinkedIn, Twitter, etc.). Establishing a persona on social media may require development of additional documentation to make them seem real. This could include filling out profile information, developing social networks, or incorporating photos. Once a persona has been developed an adversary can use it to create connections to targets of interest. These connections may be direct or may include trying to connect through others.(Citation: NEWSCASTER2014)(Citation: BlackHatRobinSage) These accounts may be leveraged during other phases of the adversary lifecycle, such as during Initial Access (ex: Spearphishing via Service). | |
.002 | Email Accounts | Adversaries may create email accounts that can be used during targeting. Adversaries can use accounts created with email providers to further their operations, such as leveraging them to conduct Phishing for Information or Phishing.(Citation: Mandiant APT1) Adversaries may also take steps to cultivate a persona around the email account, such as through use of Social Media Accounts, to increase the chance of success of follow-on behaviors. Created email accounts can also be used in the acquisition of infrastructure (ex: Domains).(Citation: Mandiant APT1) To decrease the chance of physically tying back operations to themselves, adversaries may make use of disposable email services.(Citation: Trend Micro R980 2016) | |
.003 | Cloud Accounts | Adversaries may create accounts with cloud providers that can be used during targeting. Adversaries can use cloud accounts to further their operations, including leveraging cloud storage services such as Dropbox, MEGA, Microsoft OneDrive, or AWS S3 buckets for Exfiltration to Cloud Storage or to Upload Tools. Cloud accounts can also be used in the acquisition of infrastructure, such as Virtual Private Servers or Serverless infrastructure. Establishing cloud accounts may allow adversaries to develop sophisticated capabilities without managing their own servers.(Citation: Awake Security C2 Cloud) Creating Cloud Accounts may also require adversaries to establish Email Accounts to register with the cloud provider. | |
T1588 | Подготовка необходимых средств | Adversaries may buy and/or steal capabilities that can be used during targeting. Rather than developing their own capabilities in-house, adversaries may purchase, freely download, or steal them. Activities may include the acquisition of malware, software (including licenses), exploits, certificates, and information relating to vulnerabilities. Adversaries may obtain capabilities to support their operations throughout numerous phases of the adversary lifecycle. In addition to downloading free malware, software, and exploits from the internet, adversaries may purchase these capabilities from third-party entities. Third-party entities can include technology companies that specialize in malware and exploits, criminal marketplaces, or from individuals.(Citation: NationsBuying)(Citation: PegasusCitizenLab) In addition to purchasing capabilities, adversaries may steal capabilities from third-party entities (including other adversaries). This can include stealing software licenses, malware, SSL/TLS and code-signing certificates, or raiding closed databases of vulnerabilities or exploits.(Citation: DiginotarCompromise) | |
.001 | Malware | Adversaries may buy, steal, or download malware that can be used during targeting. Malicious software can include payloads, droppers, post-compromise tools, backdoors, packers, and C2 protocols. Adversaries may acquire malware to support their operations, obtaining a means for maintaining control of remote machines, evading defenses, and executing post-compromise behaviors. In addition to downloading free malware from the internet, adversaries may purchase these capabilities from third-party entities. Third-party entities can include technology companies that specialize in malware development, criminal marketplaces (including Malware-as-a-Service, or MaaS), or from individuals. In addition to purchasing malware, adversaries may steal and repurpose malware from third-party entities (including other adversaries). | |
.002 | Tool | Adversaries may buy, steal, or download software tools that can be used during targeting. Tools can be open or closed source, free or commercial. A tool can be used for malicious purposes by an adversary, but (unlike malware) were not intended to be used for those purposes (ex: PsExec). Tool acquisition can involve the procurement of commercial software licenses, including for red teaming tools such as Cobalt Strike. Commercial software may be obtained through purchase, stealing licenses (or licensed copies of the software), or cracking trial versions.(Citation: Recorded Future Beacon 2019) Adversaries may obtain tools to support their operations, including to support execution of post-compromise behaviors. In addition to freely downloading or purchasing software, adversaries may steal software and/or software licenses from third-party entities (including other adversaries). | |
.003 | Code Signing Certificates | Adversaries may buy and/or steal code signing certificates that can be used during targeting. Code signing is the process of digitally signing executables and scripts to confirm the software author and guarantee that the code has not been altered or corrupted. Code signing provides a level of authenticity for a program from the developer and a guarantee that the program has not been tampered with.(Citation: Wikipedia Code Signing) Users and/or security tools may trust a signed piece of code more than an unsigned piece of code even if they don't know who issued the certificate or who the author is. Prior to Code Signing, adversaries may purchase or steal code signing certificates for use in operations. The purchase of code signing certificates may be done using a front organization or using information stolen from a previously compromised entity that allows the adversary to validate to a certificate provider as that entity. Adversaries may also steal code signing materials directly from a compromised third-party. | |
.004 | Digital Certificates | Adversaries may buy and/or steal SSL/TLS certificates that can be used during targeting. SSL/TLS certificates are designed to instill trust. They include information about the key, information about its owner's identity, and the digital signature of an entity that has verified the certificate's contents are correct. If the signature is valid, and the person examining the certificate trusts the signer, then they know they can use that key to communicate with its owner. Adversaries may purchase or steal SSL/TLS certificates to further their operations, such as encrypting C2 traffic (ex: Asymmetric Cryptography with Web Protocols) or even enabling Adversary-in-the-Middle if the certificate is trusted or otherwise added to the root of trust (i.e. Install Root Certificate). The purchase of digital certificates may be done using a front organization or using information stolen from a previously compromised entity that allows the adversary to validate to a certificate provider as that entity. Adversaries may also steal certificate materials directly from a compromised third-party, including from certificate authorities.(Citation: DiginotarCompromise) Adversaries may register or hijack domains that they will later purchase an SSL/TLS certificate for. Certificate authorities exist that allow adversaries to acquire SSL/TLS certificates, such as domain validation certificates, for free.(Citation: Let's Encrypt FAQ) After obtaining a digital certificate, an adversary may then install that certificate (see Install Digital Certificate) on infrastructure under their control. | |
.005 | Exploits | Adversaries may buy, steal, or download exploits that can be used during targeting. An exploit takes advantage of a bug or vulnerability in order to cause unintended or unanticipated behavior to occur on computer hardware or software. Rather than developing their own exploits, an adversary may find/modify exploits from online or purchase them from exploit vendors.(Citation: Exploit Database)(Citation: TempertonDarkHotel)(Citation: NationsBuying) In addition to downloading free exploits from the internet, adversaries may purchase exploits from third-party entities. Third-party entities can include technology companies that specialize in exploit development, criminal marketplaces (including exploit kits), or from individuals.(Citation: PegasusCitizenLab)(Citation: Wired SandCat Oct 2019) In addition to purchasing exploits, adversaries may steal and repurpose exploits from third-party entities (including other adversaries).(Citation: TempertonDarkHotel) An adversary may monitor exploit provider forums to understand the state of existing, as well as newly discovered, exploits. There is usually a delay between when an exploit is discovered and when it is made public. An adversary may target the systems of those known to conduct exploit research and development in order to gain that knowledge for use during a subsequent operation. Adversaries may use exploits during various phases of the adversary lifecycle (i.e. Exploit Public-Facing Application, Exploitation for Client Execution, Exploitation for Privilege Escalation, Exploitation for Defense Evasion, Exploitation for Credential Access, Exploitation of Remote Services, and Application or System Exploitation). | |
.006 | Vulnerabilities | Adversaries may acquire information about vulnerabilities that can be used during targeting. A vulnerability is a weakness in computer hardware or software that can, potentially, be exploited by an adversary to cause unintended or unanticipated behavior to occur. Adversaries may find vulnerability information by searching open databases or gaining access to closed vulnerability databases.(Citation: National Vulnerability Database) An adversary may monitor vulnerability disclosures/databases to understand the state of existing, as well as newly discovered, vulnerabilities. There is usually a delay between when a vulnerability is discovered and when it is made public. An adversary may target the systems of those known to conduct vulnerability research (including commercial vendors). Knowledge of a vulnerability may cause an adversary to search for an existing exploit (i.e. Exploits) or to attempt to develop one themselves (i.e. Exploits). | |
T1608 | Развертывание необходимых средств | Adversaries may upload, install, or otherwise set up capabilities that can be used during targeting. To support their operations, an adversary may need to take capabilities they developed (Develop Capabilities) or obtained (Obtain Capabilities) and stage them on infrastructure under their control. These capabilities may be staged on infrastructure that was previously purchased/rented by the adversary (Acquire Infrastructure) or was otherwise compromised by them (Compromise Infrastructure). Capabilities may also be staged on web services, such as GitHub or Pastebin, or on Platform-as-a-Service (PaaS) offerings that enable users to easily provision applications.(Citation: Volexity Ocean Lotus November 2020)(Citation: Dragos Heroku Watering Hole)(Citation: Malwarebytes Heroku Skimmers)(Citation: Netskope GCP Redirection)(Citation: Netskope Cloud Phishing) Staging of capabilities can aid the adversary in a number of initial access and post-compromise behaviors, including (but not limited to): * Staging web resources necessary to conduct Drive-by Compromise when a user browses to a site.(Citation: FireEye CFR Watering Hole 2012)(Citation: Gallagher 2015)(Citation: ATT ScanBox) * Staging web resources for a link target to be used with spearphishing.(Citation: Malwarebytes Silent Librarian October 2020)(Citation: Proofpoint TA407 September 2019) * Uploading malware or tools to a location accessible to a victim network to enable Ingress Tool Transfer.(Citation: Volexity Ocean Lotus November 2020) * Installing a previously acquired SSL/TLS certificate to use to encrypt command and control traffic (ex: Asymmetric Cryptography with Web Protocols).(Citation: DigiCert Install SSL Cert) | |
.001 | Upload Malware | Adversaries may upload malware to third-party or adversary controlled infrastructure to make it accessible during targeting. Malicious software can include payloads, droppers, post-compromise tools, backdoors, and a variety of other malicious content. Adversaries may upload malware to support their operations, such as making a payload available to a victim network to enable Ingress Tool Transfer by placing it on an Internet accessible web server. Malware may be placed on infrastructure that was previously purchased/rented by the adversary (Acquire Infrastructure) or was otherwise compromised by them (Compromise Infrastructure). Malware can also be staged on web services, such as GitHub or Pastebin.(Citation: Volexity Ocean Lotus November 2020) Adversaries may upload backdoored files, such as application binaries, virtual machine images, or container images, to third-party software stores or repositories (ex: GitHub, CNET, AWS Community AMIs, Docker Hub). By chance encounter, victims may directly download/install these backdoored files via User Execution. Masquerading may increase the chance of users mistakenly executing these files. | |
.002 | Upload Tool | Adversaries may upload tools to third-party or adversary controlled infrastructure to make it accessible during targeting. Tools can be open or closed source, free or commercial. Tools can be used for malicious purposes by an adversary, but (unlike malware) were not intended to be used for those purposes (ex: PsExec). Adversaries may upload tools to support their operations, such as making a tool available to a victim network to enable Ingress Tool Transfer by placing it on an Internet accessible web server. Tools may be placed on infrastructure that was previously purchased/rented by the adversary (Acquire Infrastructure) or was otherwise compromised by them (Compromise Infrastructure).(Citation: Dell TG-3390) Tools can also be staged on web services, such as an adversary controlled GitHub repo, or on Platform-as-a-Service offerings that enable users to easily provision applications.(Citation: Dragos Heroku Watering Hole)(Citation: Malwarebytes Heroku Skimmers)(Citation: Intezer App Service Phishing) Adversaries can avoid the need to upload a tool by having compromised victim machines download the tool directly from a third-party hosting location (ex: a non-adversary controlled GitHub repo), including the original hosting site of the tool. | |
.003 | Install Digital Certificate | Adversaries may install SSL/TLS certificates that can be used during targeting. SSL/TLS certificates are files that can be installed on servers to enable secure communications between systems. Digital certificates include information about the key, information about its owner's identity, and the digital signature of an entity that has verified the certificate's contents are correct. If the signature is valid, and the person examining the certificate trusts the signer, then they know they can use that key to communicate securely with its owner. Certificates can be uploaded to a server, then the server can be configured to use the certificate to enable encrypted communication with it.(Citation: DigiCert Install SSL Cert) Adversaries may install SSL/TLS certificates that can be used to further their operations, such as encrypting C2 traffic (ex: Asymmetric Cryptography with Web Protocols) or lending credibility to a credential harvesting site. Installation of digital certificates may take place for a number of server types, including web servers and email servers. Adversaries can obtain digital certificates (see Digital Certificates) or create self-signed certificates (see Digital Certificates). Digital certificates can then be installed on adversary controlled infrastructure that may have been acquired (Acquire Infrastructure) or previously compromised (Compromise Infrastructure). | |
.004 | Drive-by Target | Adversaries may prepare an operational environment to infect systems that visit a website over the normal course of browsing. Endpoint systems may be compromised through browsing to adversary controlled sites, as in Drive-by Compromise. In such cases, the user's web browser is typically targeted for exploitation (often not requiring any extra user interaction once landing on the site), but adversaries may also set up websites for non-exploitation behavior such as Application Access Token. Prior to Drive-by Compromise, adversaries must stage resources needed to deliver that exploit to users who browse to an adversary controlled site. Drive-by content can be staged on adversary controlled infrastructure that has been acquired (Acquire Infrastructure) or previously compromised (Compromise Infrastructure). Adversaries may upload or inject malicious web content, such as JavaScript, into websites.(Citation: FireEye CFR Watering Hole 2012)(Citation: Gallagher 2015) This may be done in a number of ways, including inserting malicious script into web pages or other user controllable web content such as forum posts. Adversaries may also craft malicious web advertisements and purchase ad space on a website through legitimate ad providers. In addition to staging content to exploit a user's web browser, adversaries may also stage scripting content to profile the user's browser (as in Gather Victim Host Information) to ensure it is vulnerable prior to attempting exploitation.(Citation: ATT ScanBox) Websites compromised by an adversary and used to stage a drive-by may be ones visited by a specific community, such as government, a particular industry, or region, where the goal is to compromise a specific user or set of users based on a shared interest. This kind of targeted campaign is referred to a strategic web compromise or watering hole attack. Adversaries may purchase domains similar to legitimate domains (ex: homoglyphs, typosquatting, different top-level domain, etc.) during acquisition of infrastructure (Domains) to help facilitate Drive-by Compromise. | |
.005 | Link Target | Adversaries may put in place resources that are referenced by a link that can be used during targeting. An adversary may rely upon a user clicking a malicious link in order to divulge information (including credentials) or to gain execution, as in Malicious Link. Links can be used for spearphishing, such as sending an email accompanied by social engineering text to coax the user to actively click or copy and paste a URL into a browser. Prior to a phish for information (as in Spearphishing Link) or a phish to gain initial access to a system (as in Spearphishing Link), an adversary must set up the resources for a link target for the spearphishing link. Typically, the resources for a link target will be an HTML page that may include some client-side script such as JavaScript to decide what content to serve to the user. Adversaries may clone legitimate sites to serve as the link target, this can include cloning of login pages of legitimate web services or organization login pages in an effort to harvest credentials during Spearphishing Link.(Citation: Malwarebytes Silent Librarian October 2020)(Citation: Proofpoint TA407 September 2019) Adversaries may also Upload Malware and have the link target point to malware for download/execution by the user. Adversaries may purchase domains similar to legitimate domains (ex: homoglyphs, typosquatting, different top-level domain, etc.) during acquisition of infrastructure (Domains) to help facilitate Malicious Link. Link shortening services can also be employed. Adversaries may also use free or paid accounts on Platform-as-a-Service providers to host link targets while taking advantage of the widely trusted domains of those providers to avoid being blocked.(Citation: Netskope GCP Redirection)(Citation: Netskope Cloud Phishing)(Citation: Intezer App Service Phishing) | |
.006 | SEO Poisoning | Adversaries may poison mechanisms that influence search engine optimization (SEO) to further lure staged capabilities towards potential victims. Search engines typically display results to users based on purchased ads as well as the site’s ranking/score/reputation calculated by their web crawlers and algorithms.(Citation: Atlas SEO)(Citation: MalwareBytes SEO) To help facilitate Drive-by Compromise, adversaries may stage content that explicitly manipulates SEO rankings in order to promote sites hosting their malicious payloads (such as Drive-by Target) within search engines. Poisoning SEO rankings may involve various tricks, such as stuffing keywords (including in the form of hidden text) into compromised sites. These keywords could be related to the interests/browsing habits of the intended victim(s) as well as more broad, seasonably popular topics (e.g. elections, trending news).(Citation: ZScaler SEO)(Citation: Atlas SEO) Adversaries may also purchase or plant incoming links to staged capabilities in order to boost the site’s calculated relevance and reputation.(Citation: MalwareBytes SEO)(Citation: DFIR Report Gootloader) SEO poisoning may also be combined with evasive redirects and other cloaking mechanisms (such as measuring mouse movements or serving content based on browser user agents, user language/localization settings, or HTTP headers) in order to feed SEO inputs while avoiding scrutiny from defenders.(Citation: ZScaler SEO)(Citation: Sophos Gootloader) |
Мы используем cookie-файлы, чтобы получить статистику, которая помогает нам улучшить сервис для вас с целью персонализации сервисов и предложений. Вы может прочитать подробнее о cookie-файлах или изменить настройки браузера. Продолжая пользоваться сайтом, вы даёте согласие на использование ваших cookie-файлов и соглашаетесь с Политикой обработки персональных данных.